Voir la notice de l'article provenant de la source American Mathematical Society
Hass, Joel 1, 2 ; Lagarias, Jeffrey 3
@article{10_1090_S0894_0347_01_00358_7,
     author = {Hass, Joel and Lagarias, Jeffrey},
     title = {The number of {Reidemeister} moves needed for unknotting},
     journal = {Journal of the American Mathematical Society},
     pages = {399--428},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-01-00358-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00358-7/}
}
                      
                      
                    TY - JOUR AU - Hass, Joel AU - Lagarias, Jeffrey TI - The number of Reidemeister moves needed for unknotting JO - Journal of the American Mathematical Society PY - 2001 SP - 399 EP - 428 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00358-7/ DO - 10.1090/S0894-0347-01-00358-7 ID - 10_1090_S0894_0347_01_00358_7 ER -
%0 Journal Article %A Hass, Joel %A Lagarias, Jeffrey %T The number of Reidemeister moves needed for unknotting %J Journal of the American Mathematical Society %D 2001 %P 399-428 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-01-00358-7/ %R 10.1090/S0894-0347-01-00358-7 %F 10_1090_S0894_0347_01_00358_7
Hass, Joel; Lagarias, Jeffrey. The number of Reidemeister moves needed for unknotting. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 399-428. doi: 10.1090/S0894-0347-01-00358-7
[1] The knot book 1994
[2] , Triangulating point sets in space Discrete Comput. Geom. 1987 99 111
[3] , A new algorithm for recognizing the unknot Geom. Topol. 1998 175 220
[4] , Studying links via closed braids. IV. Composite links and split links Invent. Math. 1990 115 139
[5] , Knots 1985
[6] , , How to draw a planar graph on a grid Combinatorica 1990 41 51
[7] On a problem in effective knot theory Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 1998
[8] Theorie der Normalflächen Acta Math. 1961 245 375
[9] Algorithms for recognizing knots and 3-manifolds Chaos Solitons Fractals 1998 569 581
[10] , , The computational complexity of knot and link problems J. ACM 1999 185 211
[11] , Intersections of curves on surfaces Israel J. Math. 1985 90 120
[12] 3-Manifolds 1976
[13] , Efficient planarity testing J. Assoc. Comput. Mach. 1974 549 568
[14] Piecewise linear topology 1969
[15] , PL equivariant surgery and invariant decompositions of 3-manifolds Adv. in Math. 1989 149 191
[16] , Algorithms for the complete decomposition of a closed 3-manifold Illinois J. Math. 1995 358 406
[17] Knot theory and its applications 1996
[18] The boundary problem of an ordinary linear differential system in the complex domain Trans. Amer. Math. Soc. 1939
[19] Knots and links 1976
[20] , Introduction to piecewise-linear topology 1982
[21] Theory of linear and integer programming 1986
[22] Theorie der Normalflächen Acta Math. 1961 245 375
[23] Complexity: knots, colourings and counting 1993
[24] Ãber Abelsche Ringe von Projektionsoperatoren Proc. Phys.-Math. Soc. Japan (3) 1939 357 375
[25] Knots and braids: some algorithmic questions 1993 109 123
[26] Ãber Abelsche Ringe von Projektionsoperatoren Proc. Phys.-Math. Soc. Japan (3) 1939 357 375
Cité par Sources :
