Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_00_00364_7,
     author = {Constantin, Peter},
     title = {An {Eulerian-Lagrangian} approach for incompressible fluids: {Local} theory},
     journal = {Journal of the American Mathematical Society},
     pages = {263--278},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00364-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00364-7/}
}
                      
                      
                    TY - JOUR AU - Constantin, Peter TI - An Eulerian-Lagrangian approach for incompressible fluids: Local theory JO - Journal of the American Mathematical Society PY - 2001 SP - 263 EP - 278 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00364-7/ DO - 10.1090/S0894-0347-00-00364-7 ID - 10_1090_S0894_0347_00_00364_7 ER -
%0 Journal Article %A Constantin, Peter %T An Eulerian-Lagrangian approach for incompressible fluids: Local theory %J Journal of the American Mathematical Society %D 2001 %P 263-278 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00364-7/ %R 10.1090/S0894-0347-00-00364-7 %F 10_1090_S0894_0347_00_00364_7
Constantin, Peter. An Eulerian-Lagrangian approach for incompressible fluids: Local theory. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 263-278. doi: 10.1090/S0894-0347-00-00364-7
[1] Vorticity and the mathematical theory of incompressible fluid flow Comm. Pure Appl. Math. 1986
[2] , , Remarks on the breakdown of smooth solutions for the 3-D Euler equations Comm. Math. Phys. 1984 61 66
[3] , Topological methods in hydrodynamics 1992 145 166
[4] Vorticity and turbulence 1994
[5] Turbulence 1995
[6] Physikalische Grundlagen der Strömungslehre 1959 1 124
[7] A new form of writing out the Navier-Stokes equation. Hamiltonian formalism Uspekhi Mat. Nauk 1989 169 170
[8] Velicity methods: Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow 1993 39 57
[9] , An unconstrained Hamiltonian formulation for incompressible fluid flow Comm. Math. Phys. 1995 207 217
[10] , Groups of diffeomorphisms and the motion of an incompressible fluid Ann. of Math. (2) 1970 102 163
[11] Nonstationary flows of viscous and ideal fluids in ð ³ J. Functional Analysis 1972 296 305
[12] , Global regularity for vortex patches Comm. Math. Phys. 1993 19 28
[13] , The inviscid limit for non-smooth vorticity Indiana Univ. Math. J. 1996 67 81
[14] Geometric and analytic studies in turbulence 1994 21 54
[15] , , Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar Nonlinearity 1994 1495 1533
[16] , , Geometric constraints on potentially singular solutions for the 3-D Euler equations Comm. Partial Differential Equations 1996 559 571
[17] , Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow Phys. Fluids 1997 876 882
[18] , , Nonsingular surface quasi-geostrophic flow Phys. Lett. A 1998 168 172
Cité par Sources :
