An Eulerian-Lagrangian approach for incompressible fluids: Local theory
Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 263-278

Voir la notice de l'article provenant de la source American Mathematical Society

We study a formulation of the incompressible Euler equations in terms of the inverse Lagrangian map. In this formulation the equations become a first order advective nonlinear system of partial differential equations.
DOI : 10.1090/S0894-0347-00-00364-7

Constantin, Peter 1

1 Department of Mathematics, The University of Chicago, Chicago, Illinois 60637-1546
@article{10_1090_S0894_0347_00_00364_7,
     author = {Constantin, Peter},
     title = {An {Eulerian-Lagrangian} approach for incompressible fluids: {Local} theory},
     journal = {Journal of the American Mathematical Society},
     pages = {263--278},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00364-7},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00364-7/}
}
TY  - JOUR
AU  - Constantin, Peter
TI  - An Eulerian-Lagrangian approach for incompressible fluids: Local theory
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 263
EP  - 278
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00364-7/
DO  - 10.1090/S0894-0347-00-00364-7
ID  - 10_1090_S0894_0347_00_00364_7
ER  - 
%0 Journal Article
%A Constantin, Peter
%T An Eulerian-Lagrangian approach for incompressible fluids: Local theory
%J Journal of the American Mathematical Society
%D 2001
%P 263-278
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00364-7/
%R 10.1090/S0894-0347-00-00364-7
%F 10_1090_S0894_0347_00_00364_7
Constantin, Peter. An Eulerian-Lagrangian approach for incompressible fluids: Local theory. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 263-278. doi: 10.1090/S0894-0347-00-00364-7

[1] Majda, Andrew Vorticity and the mathematical theory of incompressible fluid flow Comm. Pure Appl. Math. 1986

[2] Beale, J. T., Kato, T., Majda, A. Remarks on the breakdown of smooth solutions for the 3-D Euler equations Comm. Math. Phys. 1984 61 66

[3] Arnol′D, V. I., Khesin, B. A. Topological methods in hydrodynamics 1992 145 166

[4] Chorin, Alexandre J. Vorticity and turbulence 1994

[5] Frisch, Uriel Turbulence 1995

[6] Oswatitsch, K. Physikalische Grundlagen der Strömungslehre 1959 1 124

[7] Oseledets, V. I. A new form of writing out the Navier-Stokes equation. Hamiltonian formalism Uspekhi Mat. Nauk 1989 169 170

[8] Buttke, Tomas F. Velicity methods: Lagrangian numerical methods which preserve the Hamiltonian structure of incompressible fluid flow 1993 39 57

[9] Maddocks, John H., Pego, Robert L. An unconstrained Hamiltonian formulation for incompressible fluid flow Comm. Math. Phys. 1995 207 217

[10] Ebin, David G., Marsden, Jerrold Groups of diffeomorphisms and the motion of an incompressible fluid Ann. of Math. (2) 1970 102 163

[11] Kato, Tosio Nonstationary flows of viscous and ideal fluids in 𝑅³ J. Functional Analysis 1972 296 305

[12] Bertozzi, A. L., Constantin, P. Global regularity for vortex patches Comm. Math. Phys. 1993 19 28

[13] Constantin, Peter, Wu, Jiahong The inviscid limit for non-smooth vorticity Indiana Univ. Math. J. 1996 67 81

[14] Constantin, Peter Geometric and analytic studies in turbulence 1994 21 54

[15] Constantin, Peter, Majda, Andrew J., Tabak, Esteban Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar Nonlinearity 1994 1495 1533

[16] Constantin, Peter, Fefferman, Charles, Majda, Andrew J. Geometric constraints on potentially singular solutions for the 3-D Euler equations Comm. Partial Differential Equations 1996 559 571

[17] Ohkitani, Koji, Yamada, Michio Inviscid and inviscid-limit behavior of a surface quasigeostrophic flow Phys. Fluids 1997 876 882

[18] Constantin, Peter, Nie, Qing, Schã¶Rghofer, Norbert Nonsingular surface quasi-geostrophic flow Phys. Lett. A 1998 168 172

Cité par Sources :