Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_00_00361_1,
     author = {Bigelow, Stephen},
     title = {Braid groups are linear},
     journal = {Journal of the American Mathematical Society},
     pages = {471--486},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00361-1},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00361-1/}
}
                      
                      
                    TY - JOUR AU - Bigelow, Stephen TI - Braid groups are linear JO - Journal of the American Mathematical Society PY - 2001 SP - 471 EP - 486 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00361-1/ DO - 10.1090/S0894-0347-00-00361-1 ID - 10_1090_S0894_0347_00_00361_1 ER -
Bigelow, Stephen. Braid groups are linear. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 471-486. doi: 10.1090/S0894-0347-00-00361-1
[1] The variation of the sign of ð for an analytic function ð+ðð Duke Math. J. 1939 512 519
[2] , Braids, link polynomials and a new algebra Trans. Amer. Math. Soc. 1989 249 273
[3] Travaux de Thurston sur les surfaces 1979 284
[4] Homological representations of the Hecke algebra Comm. Math. Phys. 1990 141 191
[5] , The Burau representation is not faithful for ðâ¥6 Topology 1993 439 447
[6] The Burau representation of the braid group ðµ_{ð} is unfaithful for large ð Bull. Amer. Math. Soc. (N.S.) 1991 379 384
[7] The Kauffman polynomial of links and representation theory Osaka J. Math. 1987 745 758
[8] , Geometric subgroups of surface braid groups Ann. Inst. Fourier (Grenoble) 1999 417 472
Cité par Sources :
