Braid groups are linear
Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 471-486
Cet article a éte moissonné depuis la source American Mathematical Society
The braid group $B_n$ can be defined as the mapping class group of the $n$-punctured disk. A group is said to be linear if it admits a faithful representation into a group of matrices over $\mathbf R$. Recently Daan Krammer has shown that a certain representation of the braid groups is faithful for the case $n=4$. In this paper, we show that it is faithful for all $n$.
@article{10_1090_S0894_0347_00_00361_1,
author = {Bigelow, Stephen},
title = {Braid groups are linear},
journal = {Journal of the American Mathematical Society},
pages = {471--486},
year = {2001},
volume = {14},
number = {2},
doi = {10.1090/S0894-0347-00-00361-1},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00361-1/}
}
TY - JOUR AU - Bigelow, Stephen TI - Braid groups are linear JO - Journal of the American Mathematical Society PY - 2001 SP - 471 EP - 486 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00361-1/ DO - 10.1090/S0894-0347-00-00361-1 ID - 10_1090_S0894_0347_00_00361_1 ER -
Bigelow, Stephen. Braid groups are linear. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 471-486. doi: 10.1090/S0894-0347-00-00361-1
[1] The variation of the sign of 𝑉 for an analytic function 𝑈+𝑖𝑉 Duke Math. J. 1939 512 519
[2] , Braids, link polynomials and a new algebra Trans. Amer. Math. Soc. 1989 249 273
[3] Travaux de Thurston sur les surfaces 1979 284
[4] Homological representations of the Hecke algebra Comm. Math. Phys. 1990 141 191
[5] , The Burau representation is not faithful for 𝑛≥6 Topology 1993 439 447
[6] The Burau representation of the braid group 𝐵_{𝑛} is unfaithful for large 𝑛 Bull. Amer. Math. Soc. (N.S.) 1991 379 384
[7] The Kauffman polynomial of links and representation theory Osaka J. Math. 1987 745 758
[8] , Geometric subgroups of surface braid groups Ann. Inst. Fourier (Grenoble) 1999 417 472
Cité par Sources :