The averaging lemma
Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 279-296

Voir la notice de l'article provenant de la source American Mathematical Society

Averaging lemmas deduce smoothness of velocity averages, such as \[ \bar f(x):=\int _\Omega f(x,v) dv ,\quad \Omega \subset \mathbb {R}^d, \] from properties of $f$. A canonical example is that $\bar f$ is in the Sobolev space $W^{1/2}(L_2(\mathbb {R}^d))$ whenever $f$ and $g(x,v):=v\cdot \nabla _xf(x,v)$ are in $L_2(\mathbb {R}^d\times \Omega )$. The present paper shows how techniques from Harmonic Analysis such as maximal functions, wavelet decompositions, and interpolation can be used to prove $L_p$ versions of the averaging lemma. For example, it is shown that $f,g\in L_p(\mathbb {R}^d\times \Omega )$ implies that $\bar f$ is in the Besov space $B_p^s(L_p(\mathbb {R}^d))$, $s:=\min (1/p,1/p^\prime )$. Examples are constructed using wavelet decompositions to show that these averaging lemmas are sharp. A deeper analysis of the averaging lemma is made near the endpoint $p=1$.
DOI : 10.1090/S0894-0347-00-00359-3

DeVore, Ronald 1 ; Petrova, Guergana 2

1 Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208
2 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109
@article{10_1090_S0894_0347_00_00359_3,
     author = {DeVore, Ronald and Petrova, Guergana},
     title = {The averaging lemma},
     journal = {Journal of the American Mathematical Society},
     pages = {279--296},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00359-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00359-3/}
}
TY  - JOUR
AU  - DeVore, Ronald
AU  - Petrova, Guergana
TI  - The averaging lemma
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 279
EP  - 296
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00359-3/
DO  - 10.1090/S0894-0347-00-00359-3
ID  - 10_1090_S0894_0347_00_00359_3
ER  - 
%0 Journal Article
%A DeVore, Ronald
%A Petrova, Guergana
%T The averaging lemma
%J Journal of the American Mathematical Society
%D 2001
%P 279-296
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00359-3/
%R 10.1090/S0894-0347-00-00359-3
%F 10_1090_S0894_0347_00_00359_3
DeVore, Ronald; Petrova, Guergana. The averaging lemma. Journal of the American Mathematical Society, Tome 14 (2001) no. 2, pp. 279-296. doi: 10.1090/S0894-0347-00-00359-3

[1] Bergh, Jã¶Ran, Lã¶Fstrã¶M, Jã¶Rgen Interpolation spaces. An introduction 1976

[2] Bã©Zard, Max Régularité 𝐿^{𝑝} précisée des moyennes dans les équations de transport Bull. Soc. Math. France 1994 29 76

[3] Daubechies, Ingrid Orthonormal bases of compactly supported wavelets Comm. Pure Appl. Math. 1988 909 996

[4] Daubechies, Ingrid Ten lectures on wavelets 1992

[5] Devore, R. A., Petrushev, P., Yu, X. M. Nonlinear wavelet approximation in the space 𝐶(𝑅^{𝑑}) 1992 261 283

[6] Devore, Ronald A., Sharpley, Robert C. Besov spaces on domains in 𝑅^{𝑑} Trans. Amer. Math. Soc. 1993 843 864

[7] Diperna, R. J., Lions, P.-L., Meyer, Y. 𝐿^{𝑝} regularity of velocity averages Ann. Inst. H. Poincaré C Anal. Non Linéaire 1991 271 287

[8] Golse, Franã§Ois, Lions, Pierre-Louis, Perthame, Benoã®T, Sentis, Rã©Mi Regularity of the moments of the solution of a transport equation J. Funct. Anal. 1988 110 125

[9] Lions, Pierre-Louis Régularité optimale des moyennes en vitesses C. R. Acad. Sci. Paris Sér. I Math. 1995 911 915

[10] Meyer, Yves Ondelettes et opérateurs. I 1990

Cité par Sources :