Quiver varieties and finite dimensional representations of quantum affine algebras
Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 145-238

Voir la notice de l'article provenant de la source American Mathematical Society

We study finite dimensional representations of the quantum affine algebra ${\mathbf {U}}_q(\widehat {\mathfrak {g}})$ using geometry of quiver varieties introduced by the author. As an application, we obtain character formulas expressed in terms of intersection cohomologies of quiver varieties.
DOI : 10.1090/S0894-0347-00-00353-2

Nakajima, Hiraku 1

1 Department of Mathematics, Kyoto University, Kyoto 606-8502, Japan
@article{10_1090_S0894_0347_00_00353_2,
     author = {Nakajima, Hiraku},
     title = {Quiver varieties and finite dimensional representations of quantum affine algebras},
     journal = {Journal of the American Mathematical Society},
     pages = {145--238},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00353-2},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00353-2/}
}
TY  - JOUR
AU  - Nakajima, Hiraku
TI  - Quiver varieties and finite dimensional representations of quantum affine algebras
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 145
EP  - 238
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00353-2/
DO  - 10.1090/S0894-0347-00-00353-2
ID  - 10_1090_S0894_0347_00_00353_2
ER  - 
%0 Journal Article
%A Nakajima, Hiraku
%T Quiver varieties and finite dimensional representations of quantum affine algebras
%J Journal of the American Mathematical Society
%D 2001
%P 145-238
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00353-2/
%R 10.1090/S0894-0347-00-00353-2
%F 10_1090_S0894_0347_00_00353_2
Nakajima, Hiraku. Quiver varieties and finite dimensional representations of quantum affine algebras. Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 145-238. doi: 10.1090/S0894-0347-00-00353-2

[1] Akasaka, Tatsuya, Kashiwara, Masaki Finite-dimensional representations of quantum affine algebras Publ. Res. Inst. Math. Sci. 1997 839 867

[2] Atiyah, M. F. Convexity and commuting Hamiltonians Bull. London Math. Soc. 1982 1 15

[3] Atiyah, M. F., Bott, R. The Yang-Mills equations over Riemann surfaces Philos. Trans. Roy. Soc. London Ser. A 1983 523 615

[4] Baum, Paul, Fulton, William, Macpherson, Robert Riemann-Roch and topological 𝐾 theory for singular varieties Acta Math. 1979 155 192

[5] Beck, Jonathan Braid group action and quantum affine algebras Comm. Math. Phys. 1994 555 568

[6] Beä­Linson, A. A., Bernstein, J., Deligne, P. Faisceaux pervers 1982 5 171

[7] Biaå‚Ynicki-Birula, A. Some theorems on actions of algebraic groups Ann. of Math. (2) 1973 480 497

[8] Carrell, James B., Sommese, Andrew John 𝐶*-actions Math. Scand. 1978/79 49 59

[9] Chari, Vyjayanthi, Pressley, Andrew Fundamental representations of Yangians and singularities of 𝑅-matrices J. Reine Angew. Math. 1991 87 128

[10] Chari, Vyjayanthi, Pressley, Andrew A guide to quantum groups 1994

[11] Chari, Vyjayanthi, Pressley, Andrew Quantum affine algebras and their representations 1995 59 78

[12] Chari, Vyjayanthi, Pressley, Andrew Quantum affine algebras at roots of unity Represent. Theory 1997 280 328

[13] Chriss, Neil, Ginzburg, Victor Representation theory and complex geometry 1997

[14] De Concini, C., Lusztig, G., Procesi, C. Homology of the zero-set of a nilpotent vector field on a flag manifold J. Amer. Math. Soc. 1988 15 34

[15] Drinfel′D, V. G. A new realization of Yangians and of quantum affine algebras Dokl. Akad. Nauk SSSR 1987 13 17

[16] Ellingsrud, Geir, Strã¸Mme, Stein Arild Towards the Chow ring of the Hilbert scheme of 𝑃² J. Reine Angew. Math. 1993 33 44

[17] Fulton, William Intersection theory 1984

[18] Ginzburg, Victor, Vasserot, ÉRic Langlands reciprocity for affine quantum groups of type 𝐴_{𝑛} Internat. Math. Res. Notices 1993 67 85

[19] Ginzburg, Victor, Kapranov, Mikhail, Vasserot, ÉRic Langlands reciprocity for algebraic surfaces Math. Res. Lett. 1995 147 160

[20] Grojnowski, I. Instantons and affine algebras. I. The Hilbert scheme and vertex operators Math. Res. Lett. 1996 275 291

[21] Kazhdan, David, Lusztig, George Proof of the Deligne-Langlands conjecture for Hecke algebras Invent. Math. 1987 153 215

[22] King, A. D. Moduli of representations of finite-dimensional algebras Quart. J. Math. Oxford Ser. (2) 1994 515 530

[23] Kronheimer, Peter B., Nakajima, Hiraku Yang-Mills instantons on ALE gravitational instantons Math. Ann. 1990 263 307

[24] Lusztig, G. Green polynomials and singularities of unipotent classes Adv. in Math. 1981 169 178

[25] Lusztig, George Equivariant 𝐾-theory and representations of Hecke algebras Proc. Amer. Math. Soc. 1985 337 342

[26] Lusztig, George Affine Hecke algebras and their graded version J. Amer. Math. Soc. 1989 599 635

[27] Lusztig, G. Canonical bases arising from quantized enveloping algebras J. Amer. Math. Soc. 1990 447 498

[28] Lusztig, G. Quivers, perverse sheaves, and quantized enveloping algebras J. Amer. Math. Soc. 1991 365 421

[29] Lusztig, G. Affine quivers and canonical bases Inst. Hautes Études Sci. Publ. Math. 1992 111 163

[30] Lusztig, George Introduction to quantum groups 1993

[31] Lusztig, George Cuspidal local systems and graded Hecke algebras. II 1995 217 275

[32] Lusztig, G. On quiver varieties Adv. Math. 1998 141 182

[33] Lusztig, G. Bases in equivariant 𝐾-theory. II Represent. Theory 1999 281 353

[34] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[35] Mumford, D., Fogarty, J., Kirwan, F. Geometric invariant theory 1994

[36] Nakajima, Hiraku Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras Duke Math. J. 1994 365 416

[37] Nakajima, Hiraku Quiver varieties and Kac-Moody algebras Duke Math. J. 1998 515 560

[38] Ringel, Claus Michael Hall algebras and quantum groups Invent. Math. 1990 583 591

[39] Saito, Yoshihisa Quantum toroidal algebras and their vertex representations Publ. Res. Inst. Math. Sci. 1998 155 177

[40] Saito, Y., Takemura, K., Uglov, D. Toroidal actions on level 1 modules of 𝑈_{𝑞}(̂𝑠𝑙_{𝑛}) Transform. Groups 1998 75 102

[41] Sjamaar, Reyer, Lerman, Eugene Stratified symplectic spaces and reduction Ann. of Math. (2) 1991 375 422

[42] Sjamaar, Reyer Holomorphic slices, symplectic reduction and multiplicities of representations Ann. of Math. (2) 1995 87 129

[43] Tanisaki, Toshiyuki Hodge modules, equivariant 𝐾-theory and Hecke algebras Publ. Res. Inst. Math. Sci. 1987 841 879

[44] Thomason, R. W. Algebraic 𝐾-theory of group scheme actions 1987 539 563

[45] Thomason, R. W. Equivariant algebraic vs. topological 𝐾-homology Atiyah-Segal-style Duke Math. J. 1988 589 636

[46] Thomason, R. W. Une formule de Lefschetz en 𝐾-théorie équivariante algébrique Duke Math. J. 1992 447 462

[47] Varagnolo, M., Vasserot, E. Double-loop algebras and the Fock space Invent. Math. 1998 133 159

[48] Vasserot, E. Affine quantum groups and equivariant 𝐾-theory Transform. Groups 1998 269 299

Cité par Sources :