Voir la notice de l'article provenant de la source American Mathematical Society
Garoufalidis, Stavros 1 ; Pommersheim, James 2
@article{10_1090_S0894_0347_00_00352_0,
     author = {Garoufalidis, Stavros and Pommersheim, James},
     title = {Values of zeta functions at negative integers, {Dedekind} sums and toric geometry},
     journal = {Journal of the American Mathematical Society},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00352-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00352-0/}
}
                      
                      
                    TY - JOUR AU - Garoufalidis, Stavros AU - Pommersheim, James TI - Values of zeta functions at negative integers, Dedekind sums and toric geometry JO - Journal of the American Mathematical Society PY - 2001 SP - 1 EP - 23 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00352-0/ DO - 10.1090/S0894-0347-00-00352-0 ID - 10_1090_S0894_0347_00_00352_0 ER -
%0 Journal Article %A Garoufalidis, Stavros %A Pommersheim, James %T Values of zeta functions at negative integers, Dedekind sums and toric geometry %J Journal of the American Mathematical Society %D 2001 %P 1-23 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00352-0/ %R 10.1090/S0894-0347-00-00352-0 %F 10_1090_S0894_0347_00_00352_0
Garoufalidis, Stavros; Pommersheim, James. Values of zeta functions at negative integers, Dedekind sums and toric geometry. Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 1-23. doi: 10.1090/S0894-0347-00-00352-0
[1] , Identities for sums of Dedekind type J. Number Theory 1982 391 396
[2] A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed Math. Oper. Res. 1994 769 779
[3] Points entiers dans les polyèdres convexes Ann. Sci. Ãcole Norm. Sup. (4) 1988 653 663
[4] , An equivariant Riemann-Roch theorem for complete, simplicial toric varieties J. Reine Angew. Math. 1997 67 92
[5] , Lattice points in simple polytopes J. Amer. Math. Soc. 1997 371 392
[6] , Genera of algebraic varieties and counting of lattice points Bull. Amer. Math. Soc. (N.S.) 1994 62 69
[7] ð-adic ð¿-functions for totally real number field 1978 24 37
[8] Valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme. I J. Number Theory 1982 32 64
[9] Sur les points singuliers des équations différentielles C. R. Acad. Sci. Paris 1939 10 11
[10] The geometry of toric varieties Uspekhi Mat. Nauk 1978
[11] A mean ergodic theorem Duke Math. J. 1939 635 646
[12] Introduction to toric varieties 1993
[13] Riemann-Roch for toric orbifolds J. Differential Geom. 1997 53 73
[14] Some new reciprocity formulas for generalized Dedekind sums Results Math. 1985 21 46
[15] Brumer elements over a real quadratic base field Exposition. Math. 1990 137 184
[16] , The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes Algebra i Analiz 1992 188 216
[17] , Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782
[18] Pickâs theorem and the Todd class of a toric variety Adv. Math. 1993 183 231
[19] Toric varieties, lattice points and Dedekind sums Math. Ann. 1993 1 24
[20] Products of cycles and the Todd class of a toric variety J. Amer. Math. Soc. 1996 813 826
[21] Barvinokâs algorithm and the Todd class of a toric variety J. Pure Appl. Algebra 1997 519 533
[22] , Dedekind sums 1972
[23] Eisenstein cocycles for ðºð¿âð and values of ð¿-functions in real quadratic fields Comment. Math. Helv. 1992 363 382
[24] Eisenstein group cocycles for ðºð¿_{ð} and values of ð¿-functions Invent. Math. 1993 581 616
[25] On evaluation of zeta functions of totally real algebraic number fields at non-positive integers J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1976 393 417
[26] On special values of zeta functions of totally real algebraic number fields 1980 591 597
[27] Bernoullische Polynome und quadratische Zahlkörper Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1968 7 38
[28] Ãber die Fourierschen Koeffizienten von Modulformen Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 15 56
[29] Algebraic properties of Shintaniâs generating functions: Dedekind sums and cocycles on ððºð¿â(ð) Compositio Math. 1998 333 362
[30] The Eisenstein measure and real quadratic fields 1989 887 927
[31] Higher dimensional Dedekind sums Math. Ann. 1973 149 172
[32] A Kronecker limit formula for real quadratic fields Math. Ann. 1975 153 184
[33] Nombres de classes et fractions continues 1975 81 97
[34] Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs 1977 135 151
Cité par Sources :
