Values of zeta functions at negative integers, Dedekind sums and toric geometry
Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 1-23

Voir la notice de l'article provenant de la source American Mathematical Society

We study relations among special values of zeta functions, invariants of toric varieties, and generalized Dedekind sums. In particular, we use invariants arising in the Todd class of a toric variety to give a new explicit formula for the values of the zeta function of a real quadratic field at nonpositive integers. We also express these invariants in terms of the generalized Dedekind sums studied previously by several authors. The paper includes conceptual proofs of these relations and explicit computations of the various zeta values and Dedekind sums involved.
DOI : 10.1090/S0894-0347-00-00352-0

Garoufalidis, Stavros 1 ; Pommersheim, James 2

1 School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160
2 Department of Mathematics, Pomona College, 610 North College Ave., Claremont, California 91711
@article{10_1090_S0894_0347_00_00352_0,
     author = {Garoufalidis, Stavros and Pommersheim, James},
     title = {Values of zeta functions at negative integers, {Dedekind} sums and toric geometry},
     journal = {Journal of the American Mathematical Society},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00352-0},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00352-0/}
}
TY  - JOUR
AU  - Garoufalidis, Stavros
AU  - Pommersheim, James
TI  - Values of zeta functions at negative integers, Dedekind sums and toric geometry
JO  - Journal of the American Mathematical Society
PY  - 2001
SP  - 1
EP  - 23
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00352-0/
DO  - 10.1090/S0894-0347-00-00352-0
ID  - 10_1090_S0894_0347_00_00352_0
ER  - 
%0 Journal Article
%A Garoufalidis, Stavros
%A Pommersheim, James
%T Values of zeta functions at negative integers, Dedekind sums and toric geometry
%J Journal of the American Mathematical Society
%D 2001
%P 1-23
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00352-0/
%R 10.1090/S0894-0347-00-00352-0
%F 10_1090_S0894_0347_00_00352_0
Garoufalidis, Stavros; Pommersheim, James. Values of zeta functions at negative integers, Dedekind sums and toric geometry. Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 1-23. doi: 10.1090/S0894-0347-00-00352-0

[1] Apostol, Tom M., Vu, Thiennu H. Identities for sums of Dedekind type J. Number Theory 1982 391 396

[2] Barvinok, Alexander I. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed Math. Oper. Res. 1994 769 779

[3] Brion, Michel Points entiers dans les polyèdres convexes Ann. Sci. École Norm. Sup. (4) 1988 653 663

[4] Brion, Michel, Vergne, Michã¨Le An equivariant Riemann-Roch theorem for complete, simplicial toric varieties J. Reine Angew. Math. 1997 67 92

[5] Brion, Michel, Vergne, Michã¨Le Lattice points in simple polytopes J. Amer. Math. Soc. 1997 371 392

[6] Cappell, Sylvain E., Shaneson, Julius L. Genera of algebraic varieties and counting of lattice points Bull. Amer. Math. Soc. (N.S.) 1994 62 69

[7] Cassou-Noguã¨S, Pierrette 𝑝-adic 𝐿-functions for totally real number field 1978 24 37

[8] Cassou-Noguã¨S, Pierrette Valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme. I J. Number Theory 1982 32 64

[9] Rosenblatt, Alfred Sur les points singuliers des équations différentielles C. R. Acad. Sci. Paris 1939 10 11

[10] Danilov, V. I. The geometry of toric varieties Uspekhi Mat. Nauk 1978

[11] Dunford, Nelson A mean ergodic theorem Duke Math. J. 1939 635 646

[12] Fulton, William Introduction to toric varieties 1993

[13] Guillemin, Victor Riemann-Roch for toric orbifolds J. Differential Geom. 1997 53 73

[14] Halbritter, Ulrich Some new reciprocity formulas for generalized Dedekind sums Results Math. 1985 21 46

[15] Hayes, David R. Brumer elements over a real quadratic base field Exposition. Math. 1990 137 184

[16] Pukhlikov, A. V., Khovanskiä­, A. G. The Riemann-Roch theorem for integrals and sums of quasipolynomials on virtual polytopes Algebra i Analiz 1992 188 216

[17] Maclane, Saunders, Schilling, O. F. G. Infinite number fields with Noether ideal theories Amer. J. Math. 1939 771 782

[18] Morelli, Robert Pick’s theorem and the Todd class of a toric variety Adv. Math. 1993 183 231

[19] Pommersheim, James E. Toric varieties, lattice points and Dedekind sums Math. Ann. 1993 1 24

[20] Pommersheim, James E. Products of cycles and the Todd class of a toric variety J. Amer. Math. Soc. 1996 813 826

[21] Pommersheim, James E. Barvinok’s algorithm and the Todd class of a toric variety J. Pure Appl. Algebra 1997 519 533

[22] Rademacher, Hans, Grosswald, Emil Dedekind sums 1972

[23] Sczech, Robert Eisenstein cocycles for 𝐺𝐿₂𝑄 and values of 𝐿-functions in real quadratic fields Comment. Math. Helv. 1992 363 382

[24] Sczech, Robert Eisenstein group cocycles for 𝐺𝐿_{𝑛} and values of 𝐿-functions Invent. Math. 1993 581 616

[25] Shintani, Takuro On evaluation of zeta functions of totally real algebraic number fields at non-positive integers J. Fac. Sci. Univ. Tokyo Sect. IA Math. 1976 393 417

[26] Shintani, Takuro On special values of zeta functions of totally real algebraic number fields 1980 591 597

[27] Siegel, Carl Ludwig Bernoullische Polynome und quadratische Zahlkörper Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1968 7 38

[28] Siegel, Carl Ludwig Über die Fourierschen Koeffizienten von Modulformen Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 1970 15 56

[29] Solomon, David Algebraic properties of Shintani’s generating functions: Dedekind sums and cocycles on 𝑃𝐺𝐿₂(𝑄) Compositio Math. 1998 333 362

[30] Stevens, Glenn The Eisenstein measure and real quadratic fields 1989 887 927

[31] Zagier, Don Higher dimensional Dedekind sums Math. Ann. 1973 149 172

[32] Zagier, Don A Kronecker limit formula for real quadratic fields Math. Ann. 1975 153 184

[33] Zagier, Don Nombres de classes et fractions continues 1975 81 97

[34] Zagier, D. Valeurs des fonctions zêta des corps quadratiques réels aux entiers négatifs 1977 135 151

Cité par Sources :