@article{10_1090_S0894_0347_00_00349_0,
author = {Hjorth, Greg},
title = {Vaught{\textquoteright}s conjecture on analytic sets},
journal = {Journal of the American Mathematical Society},
pages = {125--143},
year = {2001},
volume = {14},
number = {1},
doi = {10.1090/S0894-0347-00-00349-0},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00349-0/}
}
TY - JOUR AU - Hjorth, Greg TI - Vaught’s conjecture on analytic sets JO - Journal of the American Mathematical Society PY - 2001 SP - 125 EP - 143 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00349-0/ DO - 10.1090/S0894-0347-00-00349-0 ID - 10_1090_S0894_0347_00_00349_0 ER -
Hjorth, Greg. Vaught’s conjecture on analytic sets. Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 125-143. doi: 10.1090/S0894-0347-00-00349-0
[1] The topological Vaught’s conjecture and minimal counterexamples J. Symbolic Logic 1994 757 784
[2] Polish group actions: dichotomies and generalized elementary embeddings J. Amer. Math. Soc. 1998 397 449
[3] , Borel actions of Polish groups Bull. Amer. Math. Soc. (N.S.) 1993 334 341
[4] , The descriptive set theory of Polish group actions 1996
[5] , On the geometry of 𝑈-rank 2 types 1993 10 24
[6] Effective enumeration of classes in a Σ¹₁ equivalence relation Indiana Univ. Math. J. 1979 353 364
[7] Transformation groups and 𝐶*-algebras Ann. of Math. (2) 1965 38 55
[8] On automorphism groups of countable structures J. Symbolic Logic 1998 891 896
[9] , , Definability of sets in models of axiomatic theories Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 1961 163 167
[10] , , Vaught’s conjecture for varieties Trans. Amer. Math. Soc. 1994 173 196
[11] Orbit cardinals: on the effective cardinalities arising as quotient spaces of the form 𝑋/𝐺 where 𝐺 acts on a Polish space 𝑋 Israel J. Math. 1999 221 261
[12] , Vaught’s conjecture and the Glimm-Effros property for Polish transformation groups Trans. Amer. Math. Soc. 1999 2623 2641
[13] Set theory 1978
[14] Classical descriptive set theory 1995
[15] Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers 1971
[16] Descriptive set theory 1980
[17] Polish group actions and the Vaught conjecture Trans. Amer. Math. Soc. 1994 335 353
[18] Martin’s conjecture for 𝜔-stable theories Israel J. Math. 1984 15 25
[19] On Vaught’s conjecture 1978 193 208
[20] On Lusin’s restricted continuum problem Ann. of Math. (2) 1984 7 37
[21] Invariant sets in topology and logic Fund. Math. 1974/75 269 294
Cité par Sources :