Voir la notice de l'article provenant de la source American Mathematical Society
Yampolsky, Michael 1, 2 ; Zakeri, Saeed 3
@article{10_1090_S0894_0347_00_00348_9,
     author = {Yampolsky, Michael and Zakeri, Saeed},
     title = {Mating {Siegel} quadratic polynomials},
     journal = {Journal of the American Mathematical Society},
     pages = {25--78},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2001},
     doi = {10.1090/S0894-0347-00-00348-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00348-9/}
}
                      
                      
                    TY - JOUR AU - Yampolsky, Michael AU - Zakeri, Saeed TI - Mating Siegel quadratic polynomials JO - Journal of the American Mathematical Society PY - 2001 SP - 25 EP - 78 VL - 14 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00348-9/ DO - 10.1090/S0894-0347-00-00348-9 ID - 10_1090_S0894_0347_00_00348_9 ER -
%0 Journal Article %A Yampolsky, Michael %A Zakeri, Saeed %T Mating Siegel quadratic polynomials %J Journal of the American Mathematical Society %D 2001 %P 25-78 %V 14 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00348-9/ %R 10.1090/S0894-0347-00-00348-9 %F 10_1090_S0894_0347_00_00348_9
Yampolsky, Michael; Zakeri, Saeed. Mating Siegel quadratic polynomials. Journal of the American Mathematical Society, Tome 14 (2001) no. 1, pp. 25-78. doi: 10.1090/S0894-0347-00-00348-9
[1] , Riemannâs mapping theorem for variable metrics Ann. of Math. (2) 1960 385 404
[2] Bifurcations of dynamic rays in complex polynomials of degree two Ergodic Theory Dynam. Systems 1992 401 423
[3] , Ordered orbits of the shift, square roots, and the devilâs staircase Math. Proc. Cambridge Philos. Soc. 1994 451 481
[4] Systèmes dynamiques holomorphes 1983 39 63
[5] Disques de Siegel et anneaux de Herman Astérisque 1987
[6] , Conformally natural extension of homeomorphisms of the circle Acta Math. 1986 23 48
[7] , A proof of Thurstonâs topological characterization of rational functions Acta Math. 1993 263 297
[8] Chirurgie parabolique C. R. Acad. Sci. Paris Sér. I Math. 1998 195 198
[9] Complex dynamics and renormalization 1994
[10] , One-dimensional dynamics 1993
[11] , Geometrical aspects of stability theory for Hillâs equations Arch. Rational Mech. Anal. 1995 225 240
[12] Local connectivity of some Julia sets containing a circle with an irrational rotation Acta Math. 1996 163 224
[13] A partial description of parameter space of rational maps of degree two. I Acta Math. 1992 11 87
[14] Upper limits to the real roots of a real algebraic equation Amer. Math. Monthly 1939 334 338
[15] Rational rotation numbers for maps of the circle Comm. Math. Phys. 1988 109 128
[16] Matings of quadratic polynomials Ergodic Theory Dynam. Systems 1992 589 620
[17] , Local connectivity of the Julia set for geometrically finite rational maps Sci. China Ser. A 1996 39 47
[18] Complex bounds for renormalization of critical circle maps Ergodic Theory Dynam. Systems 1999 227 257
[19] Il nây a pas de contre-exemple de Denjoy analytique C. R. Acad. Sci. Paris Sér. I Math. 1984 141 144
Cité par Sources :
