The “hot spots” conjecture for domains with two axes of symmetry
Journal of the American Mathematical Society, Tome 13 (2000) no. 4, pp. 741-772

Voir la notice de l'article provenant de la source American Mathematical Society

Consider a Neumann eigenfunction with lowest nonzero eigenvalue of a convex planar domain with two axes of symmetry. We show that the maximum and minimum of the eigenfunction are achieved at points on the boundary only. We deduce J. Rauch’s “hot spots” conjecture: if the initial temperature distribution is not orthogonal to the first nonzero eigenspace, then the point at which the temperature achieves its maximum tends to the boundary. This was already proved by Bañuelos and Burdzy in the case in which the eigenspace is one dimensional. We introduce here a new technique based on deformations of the domain that applies to the case of multiple eigenvalues.
DOI : 10.1090/S0894-0347-00-00346-5

Jerison, David 1 ; Nadirashvili, Nikolai 2

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
2 Department of Mathematics, University of Chicago, Chicago, Illinois 60637
@article{10_1090_S0894_0347_00_00346_5,
     author = {Jerison, David and Nadirashvili, Nikolai},
     title = {The \^a€œhot spots\^a€ conjecture for domains with two axes of symmetry},
     journal = {Journal of the American Mathematical Society},
     pages = {741--772},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00346-5},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00346-5/}
}
TY  - JOUR
AU  - Jerison, David
AU  - Nadirashvili, Nikolai
TI  - The “hot spots” conjecture for domains with two axes of symmetry
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 741
EP  - 772
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00346-5/
DO  - 10.1090/S0894-0347-00-00346-5
ID  - 10_1090_S0894_0347_00_00346_5
ER  - 
%0 Journal Article
%A Jerison, David
%A Nadirashvili, Nikolai
%T The “hot spots” conjecture for domains with two axes of symmetry
%J Journal of the American Mathematical Society
%D 2000
%P 741-772
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00346-5/
%R 10.1090/S0894-0347-00-00346-5
%F 10_1090_S0894_0347_00_00346_5
Jerison, David; Nadirashvili, Nikolai. The “hot spots” conjecture for domains with two axes of symmetry. Journal of the American Mathematical Society, Tome 13 (2000) no. 4, pp. 741-772. doi: 10.1090/S0894-0347-00-00346-5

[1] Burdzy, Krzysztof, Werner, Wendelin A counterexample to the “hot spots” conjecture Ann. of Math. (2) 1999 309 317

[2] Nakayama, Tadasi On Frobeniusean algebras. I Ann. of Math. (2) 1939 611 633

[3] Jerison, David S., Kenig, Carlos E. The Neumann problem on Lipschitz domains Bull. Amer. Math. Soc. (N.S.) 1981 203 207

[4] Kawohl, Bernhard Rearrangements and convexity of level sets in PDE 1985

[5] Lewy, Hans On conjugate solutions of certain partial differential equations Comm. Pure Appl. Math. 1980 441 445

[6] Melas, Antonios D. On the nodal line of the second eigenfunction of the Laplacian in 𝑅² J. Differential Geom. 1992 255 263

[7] Nadirashvili, N. S. Multiple eigenvalues of the Laplace operator Mat. Sb. (N.S.) 1987

[8] Payne, L. E. Isoperimetric inequalities and their applications SIAM Rev. 1967 453 488

[9] Arf, Cahit Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper J. Reine Angew. Math. 1939 1 44

[10] Protter, Murray H., Weinberger, Hans F. Maximum principles in differential equations 1984

[11] Rauch, Jeffrey Five problems: an introduction to the qualitative theory of partial differential equations 1975 355 369

Cité par Sources :