Entire solutions of semilinear elliptic equations in ℝ³ and a conjecture of De Giorgi
Journal of the American Mathematical Society, Tome 13 (2000) no. 4, pp. 725-739

Voir la notice de l'article provenant de la source American Mathematical Society

In 1978 De Giorgi formulated the following conjecture. Let $u$ be a solution of $\Delta u=u^{3}-u$ in all of $\mathbb {R}^{n}$ such that $\vert u\vert \le 1$ and $\partial _{n} u >0$ in $\mathbb {R}^{n}$. Is it true that all level sets $\{ u=\lambda \}$ of $u$ are hyperplanes, at least if $n\le 8$? Equivalently, does $u$ depend only on one variable? When $n=2$, this conjecture was proved in 1997 by N. Ghoussoub and C. Gui. In the present paper we prove it for $n=3$. The question, however, remains open for $n\ge 4$. The results for $n=2$ and 3 apply also to the equation $\Delta u=F’(u)$ for a large class of nonlinearities $F$.
DOI : 10.1090/S0894-0347-00-00345-3

Ambrosio, Luigi 1 ; Cabré, Xavier 2

1 Scuola Normale Superiore di Pisa, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
2 Departament de Matemàtica Aplicada 1, Universitat Politècnica de Catalunya, Diagonal, 647, 08028 Barcelona, Spain
@article{10_1090_S0894_0347_00_00345_3,
     author = {Ambrosio, Luigi and Cabr\~A{\textcopyright}, Xavier},
     title = {Entire solutions of semilinear elliptic equations in {\^a„\^A{\textthreesuperior}} and a conjecture of {De} {Giorgi}},
     journal = {Journal of the American Mathematical Society},
     pages = {725--739},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00345-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00345-3/}
}
TY  - JOUR
AU  - Ambrosio, Luigi
AU  - Cabré, Xavier
TI  - Entire solutions of semilinear elliptic equations in ℝ³ and a conjecture of De Giorgi
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 725
EP  - 739
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00345-3/
DO  - 10.1090/S0894-0347-00-00345-3
ID  - 10_1090_S0894_0347_00_00345_3
ER  - 
%0 Journal Article
%A Ambrosio, Luigi
%A Cabré, Xavier
%T Entire solutions of semilinear elliptic equations in ℝ³ and a conjecture of De Giorgi
%J Journal of the American Mathematical Society
%D 2000
%P 725-739
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00345-3/
%R 10.1090/S0894-0347-00-00345-3
%F 10_1090_S0894_0347_00_00345_3
Ambrosio, Luigi; Cabré, Xavier. Entire solutions of semilinear elliptic equations in ℝ³ and a conjecture of De Giorgi. Journal of the American Mathematical Society, Tome 13 (2000) no. 4, pp. 725-739. doi: 10.1090/S0894-0347-00-00345-3

[1] Barlow, Martin T. On the Liouville property for divergence form operators Canad. J. Math. 1998 487 496

[2] Berestycki, Henri, Caffarelli, Luis, Nirenberg, Louis Further qualitative properties for elliptic equations in unbounded domains Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 1997

[3] Bombieri, E., De Giorgi, E., Giusti, E. Minimal cones and the Bernstein problem Invent. Math. 1969 243 268

[4] Caffarelli, Luis A., Cã³Rdoba, Antonio Uniform convergence of a singular perturbation problem Comm. Pure Appl. Math. 1995 1 12

[5] Caffarelli, Luis, Garofalo, Nicola, Segã La, Fausto A gradient bound for entire solutions of quasi-linear equations and its consequences Comm. Pure Appl. Math. 1994 1457 1473

[6] De Giorgi, Ennio Convergence problems for functionals and operators 1979 131 188

[7] Farina, Alberto Some remarks on a conjecture of De Giorgi Calc. Var. Partial Differential Equations 1999 233 245

[8] Ghoussoub, N., Gui, C. On a conjecture of De Giorgi and some related problems Math. Ann. 1998 481 491

[9] Giusti, Enrico Minimal surfaces and functions of bounded variation 1984

[10] Luckhaus, Stephan, Modica, Luciano The Gibbs-Thompson relation within the gradient theory of phase transitions Arch. Rational Mech. Anal. 1989 71 83

[11] Modica, Luciano A gradient bound and a Liouville theorem for nonlinear Poisson equations Comm. Pure Appl. Math. 1985 679 684

[12] Modica, Luciano Monotonicity of the energy for entire solutions of semilinear elliptic equations 1989 843 850

[13] Modica, Luciano, Mortola, Stefano Un esempio di Γ⁻-convergenza Boll. Un. Mat. Ital. B (5) 1977 285 299

[14] Modica, Luciano, Mortola, Stefano Some entire solutions in the plane of nonlinear Poisson equations Boll. Un. Mat. Ital. B (5) 1980 614 622

[15] Ziemer, William P. Weakly differentiable functions 1989

Cité par Sources :