Linear algebraic groups and countable Borel equivalence relations
Journal of the American Mathematical Society, Tome 13 (2000) no. 4, pp. 909-943

Voir la notice de l'article provenant de la source American Mathematical Society

If $R_i$ is an equivalence relation on a standard Borel space $B_i\ (i=1,2)$, then we say that $R_1$ is Borel reducible to $R_2$ if there is a Borel function $f: B_1\to B_2$ such that $(x,y)\in R_1 \Leftrightarrow (f(x),f(y))\in R_2$. An equivalence relation $R$ on a standard Borel space $B$ is Borel if its graph is a Borel subset of $B\times B$. It is countable if each of its equivalence classes is countable. We investigate the complexity of Borel reducibility of countable Borel equivalence relations on standard Borel spaces. We show that it is at least as complex as the relation of inclusion on the collection of Borel subsets of the real line. We also show that Borel reducibility is ${\boldsymbol \Sigma }^{\boldsymbol 1}_{\boldsymbol 2}$-complete. The proofs make use of the ergodic theory of linear algebraic groups, and more particularly the superrigidity theory of R. Zimmer.
DOI : 10.1090/S0894-0347-00-00341-6

Adams, Scot 1 ; Kechris, Alexander 2

1 Department of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
2 Department of Mathematics, Caltech, Pasadena, California 91125
@article{10_1090_S0894_0347_00_00341_6,
     author = {Adams, Scot and Kechris, Alexander},
     title = {Linear algebraic groups and countable {Borel} equivalence relations},
     journal = {Journal of the American Mathematical Society},
     pages = {909--943},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00341-6},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00341-6/}
}
TY  - JOUR
AU  - Adams, Scot
AU  - Kechris, Alexander
TI  - Linear algebraic groups and countable Borel equivalence relations
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 909
EP  - 943
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00341-6/
DO  - 10.1090/S0894-0347-00-00341-6
ID  - 10_1090_S0894_0347_00_00341_6
ER  - 
%0 Journal Article
%A Adams, Scot
%A Kechris, Alexander
%T Linear algebraic groups and countable Borel equivalence relations
%J Journal of the American Mathematical Society
%D 2000
%P 909-943
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00341-6/
%R 10.1090/S0894-0347-00-00341-6
%F 10_1090_S0894_0347_00_00341_6
Adams, Scot; Kechris, Alexander. Linear algebraic groups and countable Borel equivalence relations. Journal of the American Mathematical Society, Tome 13 (2000) no. 4, pp. 909-943. doi: 10.1090/S0894-0347-00-00341-6

[1] Adams, Scot Indecomposability of treed equivalence relations Israel J. Math. 1988

[2] Adams, Scott Trees and amenable equivalence relations Ergodic Theory Dynam. Systems 1990 1 14

[3] De La Harpe, Pierre, Valette, Alain La propriété (𝑇) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger) Astérisque 1989 158

[4] Dieudonnã©, Jean Sur les groupes classiques 1973

[5] Dougherty, R., Jackson, S., Kechris, A. S. The structure of hyperfinite Borel equivalence relations Trans. Amer. Math. Soc. 1994 193 225

[6] Effros, Edward G. Transformation groups and 𝐶*-algebras Ann. of Math. (2) 1965 38 55

[7] Silverman, H., Ziegler, M. Functions of positive real part with negative coefficients Houston J. Math. 1978 269 275

[8] Feldman, Jacob, Moore, Calvin C. Ergodic equivalence relations, cohomology, and von Neumann algebras. I Trans. Amer. Math. Soc. 1977 289 324

[9] Friedman, Harvey, Stanley, Lee A Borel reducibility theory for classes of countable structures J. Symbolic Logic 1989 894 914

[10] Fuchs, Lã¡Szlã³ Infinite abelian groups. Vol. I 1970

[11] Glimm, James Locally compact transformation groups Trans. Amer. Math. Soc. 1961 124 138

[12] Gorbatsevich, V. V., Onishchik, A. L., Vinberg, E. B. Foundations of Lie theory and Lie transformation groups 1997

[13] Harrington, L. A., Kechris, A. S., Louveau, A. A Glimm-Effros dichotomy for Borel equivalence relations J. Amer. Math. Soc. 1990 903 928

[14] Hjorth, Greg, Kechris, Alexander S. Borel equivalence relations and classifications of countable models Ann. Pure Appl. Logic 1996 221 272

[15] Humphreys, James E. Linear algebraic groups 1975

[16] Kechris, Alexander S. The structure of Borel equivalence relations in Polish spaces 1992 89 102

[17] Kechris, Alexander S. Countable sections for locally compact group actions Ergodic Theory Dynam. Systems 1992 283 295

[18] Kechris, Alexander S. Classical descriptive set theory 1995

[19] Louveau, Alain, Velicì†Koviä‡, Boban A note on Borel equivalence relations Proc. Amer. Math. Soc. 1994 255 259

[20] Margulis, G. A. Discrete subgroups of semisimple Lie groups 1991

[21] Moore, Calvin C. Ergodic theory and von Neumann algebras 1982 179 226

[22] Moschovakis, Yiannis N. Descriptive set theory 1980

[23] Rotman, Joseph J. An introduction to the theory of groups 1995

[24] Schmidt, Klaus Algebraic ideas in ergodic theory 1990

[25] Serre, J.-P. A course in arithmetic 1973

[26] Silver, Jack H. Counting the number of equivalence classes of Borel and coanalytic equivalence relations Ann. Math. Logic 1980 1 28

[27] Varadarajan, V. S. Groups of automorphisms of Borel spaces Trans. Amer. Math. Soc. 1963 191 220

[28] Zimmer, Robert J. Ergodic theory and semisimple groups 1984

[29] Zimmer, Robert J. Groups generating transversals to semisimple Lie group actions Israel J. Math. 1991 151 159

Cité par Sources :