Voir la notice de l'article provenant de la source American Mathematical Society
Borodin, Alexei 1 ; Okounkov, Andrei 2, 3 ; Olshanski, Grigori 4
@article{10_1090_S0894_0347_00_00337_4,
author = {Borodin, Alexei and Okounkov, Andrei and Olshanski, Grigori},
title = {Asymptotics of {Plancherel} measures for symmetric groups},
journal = {Journal of the American Mathematical Society},
pages = {481--515},
publisher = {mathdoc},
volume = {13},
number = {3},
year = {2000},
doi = {10.1090/S0894-0347-00-00337-4},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00337-4/}
}
TY - JOUR AU - Borodin, Alexei AU - Okounkov, Andrei AU - Olshanski, Grigori TI - Asymptotics of Plancherel measures for symmetric groups JO - Journal of the American Mathematical Society PY - 2000 SP - 481 EP - 515 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00337-4/ DO - 10.1090/S0894-0347-00-00337-4 ID - 10_1090_S0894_0347_00_00337_4 ER -
%0 Journal Article %A Borodin, Alexei %A Okounkov, Andrei %A Olshanski, Grigori %T Asymptotics of Plancherel measures for symmetric groups %J Journal of the American Mathematical Society %D 2000 %P 481-515 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00337-4/ %R 10.1090/S0894-0347-00-00337-4 %F 10_1090_S0894_0347_00_00337_4
Borodin, Alexei; Okounkov, Andrei; Olshanski, Grigori. Asymptotics of Plancherel measures for symmetric groups. Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 481-515. doi: 10.1090/S0894-0347-00-00337-4
[1] , Hammersleyâs interacting particle process and longest increasing subsequences Probab. Theory Related Fields 1995 199 213
[2] Permutation model for semi-circular systems and quantum random walks Pacific J. Math. 1995 373 387
[3] , A connection formula for the second Painlevé transcendent Arch. Rational Mech. Anal. 1988 97 138
[4] , An introduction to the theory of point processes 1988
[5] The spectrum edge of random matrix ensembles Nuclear Phys. B 1993 709 728
[6] Maximal orders in rational cyclic algebras of composite degree Trans. Amer. Math. Soc. 1939 82 96
[7] , Analytical de-Poissonization and its applications Theoret. Comput. Sci. 1998 1 62
[8] The longest increasing subsequence in a random permutation and a unitary random matrix model Math. Res. Lett. 1998 63 82
[9] Gaussian limit for the Plancherel measure of the symmetric group C. R. Acad. Sci. Paris Sér. I Math. 1993 303 308
[10] Transition probabilities of continual Young diagrams and the Markov moment problem Funktsional. Anal. i Prilozhen. 1993
[11] Asymptotics of the separation of roots of orthogonal polynomials Algebra i Analiz 1993 68 86
[12] Interlacing measures 1998 35 83
[13] , A variational problem for random Young tableaux Advances in Math. 1977 206 222
[14] Symmetric functions and Hall polynomials 1995
[15] Increasing subsequences and the classical groups Electron. J. Combin. 1998
[16] Asymptotic values for degrees associated with strips of Young diagrams Adv. in Math. 1981 115 136
[17] , On finite mass renormalizations in the two-dimensional Yukawa model J. Mathematical Phys. 1975 2289 2293
[18] Longest increasing and decreasing subsequences Canadian J. Math. 1961 179 191
[19] A microscopic model for the Burgers equation and longest increasing subsequences Electron. J. Probab. 1996
[20] Notes on infinite determinants of Hilbert space operators Advances in Math. 1977 244 273
[21] Trace ideals and their applications 1979
[22] , Level-spacing distributions and the Airy kernel Comm. Math. Phys. 1994 151 174
[23] , Introduction to random matrices 1993 103 130
[24] Statistical mechanics of combinatorial partitions, and their limit configurations Funktsional. Anal. i Prilozhen. 1996
[25] , Asymptotic theory of the characters of a symmetric group Funktsional. Anal. i Prilozhen. 1981
[26] , Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group Funktsional. Anal. i Prilozhen. 1985
[27] Series for all the roots of the equation (ð§-ð)^{ð} Amer. Math. Monthly 1939 425 428
[28] Random Hermitian matrices and (nonrandom) Toeplitz matrices 1994 9 15
[29] The strong SzegÅ limit theorem for circular arcs Indiana Univ. Math. J. 1971/72 277 283
Cité par Sources :