Asymptotics of Plancherel measures for symmetric groups
Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 481-515

Voir la notice de l'article provenant de la source American Mathematical Society

We consider the asymptotics of the Plancherel measures on partitions of $n$ as $n$ goes to infinity. We prove that the local structure of a Plancherel typical partition in the middle of the limit shape converges to a determinantal point process with the discrete sine kernel. On the edges of the limit shape, we prove that the joint distribution of suitably scaled 1st, 2nd, and so on rows of a Plancherel typical diagram converges to the corresponding distribution for eigenvalues of random Hermitian matrices (given by the Airy kernel). This proves a conjecture due to Baik, Deift, and Johansson by methods different from the Riemann-Hilbert techniques used in their original papers and from the combinatorial proof given by the second author. Our approach is based on an exact determinantal formula for the correlation functions of the poissonized Plancherel measures in terms of a new kernel involving Bessel functions. Our asymptotic analysis relies on the classical asymptotic formulas for the Bessel functions and depoissonization techniques.
DOI : 10.1090/S0894-0347-00-00337-4

Borodin, Alexei 1 ; Okounkov, Andrei 2, 3 ; Olshanski, Grigori 4

1 Department of Mathematics, University of Pennsylvania, Philadelphia, Pennsylvania 19104–6395 and Dobrushin Mathematics Laboratory, Institute for Problems of Information Transmission, Bolshoy Karetny 19, 101447, Moscow, Russia
2 University of Chicago, Department of Mathematics, 5734 University Ave., Chicago, Illinois 60637
3 Department of Mathematics, University of California at Berkeley, Evans Hall, Berkeley, California 94720-3840
4 Dobrushin Mathematics Laboratory, Institute for Problems of Information Transmission, Bolshoy Karetny 19, 101447, Moscow, Russia
@article{10_1090_S0894_0347_00_00337_4,
     author = {Borodin, Alexei and Okounkov, Andrei and Olshanski, Grigori},
     title = {Asymptotics of {Plancherel} measures for symmetric groups},
     journal = {Journal of the American Mathematical Society},
     pages = {481--515},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00337-4},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00337-4/}
}
TY  - JOUR
AU  - Borodin, Alexei
AU  - Okounkov, Andrei
AU  - Olshanski, Grigori
TI  - Asymptotics of Plancherel measures for symmetric groups
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 481
EP  - 515
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00337-4/
DO  - 10.1090/S0894-0347-00-00337-4
ID  - 10_1090_S0894_0347_00_00337_4
ER  - 
%0 Journal Article
%A Borodin, Alexei
%A Okounkov, Andrei
%A Olshanski, Grigori
%T Asymptotics of Plancherel measures for symmetric groups
%J Journal of the American Mathematical Society
%D 2000
%P 481-515
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00337-4/
%R 10.1090/S0894-0347-00-00337-4
%F 10_1090_S0894_0347_00_00337_4
Borodin, Alexei; Okounkov, Andrei; Olshanski, Grigori. Asymptotics of Plancherel measures for symmetric groups. Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 481-515. doi: 10.1090/S0894-0347-00-00337-4

[1] Aldous, D., Diaconis, P. Hammersley’s interacting particle process and longest increasing subsequences Probab. Theory Related Fields 1995 199 213

[2] Biane, Philippe Permutation model for semi-circular systems and quantum random walks Pacific J. Math. 1995 373 387

[3] Clarkson, Peter A., Mcleod, J. Bryce A connection formula for the second Painlevé transcendent Arch. Rational Mech. Anal. 1988 97 138

[4] Daley, D. J., Vere-Jones, D. An introduction to the theory of point processes 1988

[5] Forrester, P. J. The spectrum edge of random matrix ensembles Nuclear Phys. B 1993 709 728

[6] Perlis, Sam Maximal orders in rational cyclic algebras of composite degree Trans. Amer. Math. Soc. 1939 82 96

[7] Jacquet, Philippe, Szpankowski, Wojciech Analytical de-Poissonization and its applications Theoret. Comput. Sci. 1998 1 62

[8] Johansson, Kurt The longest increasing subsequence in a random permutation and a unitary random matrix model Math. Res. Lett. 1998 63 82

[9] Kerov, Serguei Gaussian limit for the Plancherel measure of the symmetric group C. R. Acad. Sci. Paris Sér. I Math. 1993 303 308

[10] Kerov, S. V. Transition probabilities of continual Young diagrams and the Markov moment problem Funktsional. Anal. i Prilozhen. 1993

[11] Kerov, S. V. Asymptotics of the separation of roots of orthogonal polynomials Algebra i Analiz 1993 68 86

[12] Kerov, Sergei Interlacing measures 1998 35 83

[13] Logan, B. F., Shepp, L. A. A variational problem for random Young tableaux Advances in Math. 1977 206 222

[14] Macdonald, I. G. Symmetric functions and Hall polynomials 1995

[15] Rains, E. M. Increasing subsequences and the classical groups Electron. J. Combin. 1998

[16] Regev, Amitai Asymptotic values for degrees associated with strips of Young diagrams Adv. in Math. 1981 115 136

[17] Seiler, Erhard, Simon, Barry On finite mass renormalizations in the two-dimensional Yukawa model J. Mathematical Phys. 1975 2289 2293

[18] Schensted, C. Longest increasing and decreasing subsequences Canadian J. Math. 1961 179 191

[19] Seppã¤Lã¤Inen, Timo A microscopic model for the Burgers equation and longest increasing subsequences Electron. J. Probab. 1996

[20] Simon, Barry Notes on infinite determinants of Hilbert space operators Advances in Math. 1977 244 273

[21] Simon, Barry Trace ideals and their applications 1979

[22] Tracy, Craig A., Widom, Harold Level-spacing distributions and the Airy kernel Comm. Math. Phys. 1994 151 174

[23] Tracy, Craig A., Widom, Harold Introduction to random matrices 1993 103 130

[24] Vershik, A. M. Statistical mechanics of combinatorial partitions, and their limit configurations Funktsional. Anal. i Prilozhen. 1996

[25] Vershik, A. M., Kerov, S. V. Asymptotic theory of the characters of a symmetric group Funktsional. Anal. i Prilozhen. 1981

[26] Vershik, A. M., Kerov, S. V. Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group Funktsional. Anal. i Prilozhen. 1985

[27] Eagle, Albert Series for all the roots of the equation (𝑧-𝑎)^{𝑚} Amer. Math. Monthly 1939 425 428

[28] Widom, Harold Random Hermitian matrices and (nonrandom) Toeplitz matrices 1994 9 15

[29] Widom, Harold The strong Szegő limit theorem for circular arcs Indiana Univ. Math. J. 1971/72 277 283

Cité par Sources :