Criteria for 𝜎-ampleness
Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 517-532

Voir la notice de l'article provenant de la source American Mathematical Society

In the noncommutative geometry of Artin, Van den Bergh, and others, the twisted homogeneous coordinate ring is one of the basic constructions. Such a ring is defined by a $\sigma$-ample divisor, where $\sigma$ is an automorphism of a projective scheme $X$. Many open questions regarding $\sigma$-ample divisors have remained. We derive a relatively simple necessary and sufficient condition for a divisor on $X$ to be $\sigma$-ample. As a consequence, we show right and left $\sigma$-ampleness are equivalent and any associated noncommutative homogeneous coordinate ring must be noetherian and have finite, integral GK-dimension. We also characterize which automorphisms $\sigma$ yield a $\sigma$-ample divisor.
DOI : 10.1090/S0894-0347-00-00334-9

Keeler, Dennis 1

1 Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109-1109
@article{10_1090_S0894_0347_00_00334_9,
     author = {Keeler, Dennis},
     title = {Criteria for {\dh}œŽ-ampleness},
     journal = {Journal of the American Mathematical Society},
     pages = {517--532},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00334-9},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00334-9/}
}
TY  - JOUR
AU  - Keeler, Dennis
TI  - Criteria for 𝜎-ampleness
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 517
EP  - 532
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00334-9/
DO  - 10.1090/S0894-0347-00-00334-9
ID  - 10_1090_S0894_0347_00_00334_9
ER  - 
%0 Journal Article
%A Keeler, Dennis
%T Criteria for 𝜎-ampleness
%J Journal of the American Mathematical Society
%D 2000
%P 517-532
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00334-9/
%R 10.1090/S0894-0347-00-00334-9
%F 10_1090_S0894_0347_00_00334_9
Keeler, Dennis. Criteria for 𝜎-ampleness. Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 517-532. doi: 10.1090/S0894-0347-00-00334-9

[1] Artin, M., Stafford, J. T. Noncommutative graded domains with quadratic growth Invent. Math. 1995 231 276

[2] Artin, M., Tate, J., Van Den Bergh, M. Some algebras associated to automorphisms of elliptic curves 1990 33 85

[3] Artin, M., Van Den Bergh, M. Twisted homogeneous coordinate rings J. Algebra 1990 249 271

[4] Artin, M., Zhang, J. J. Noncommutative projective schemes Adv. Math. 1994 228 287

[5] Fujita, Takao Vanishing theorems for semipositive line bundles 1983 519 528

[6] Fulton, William Intersection theory 1998

[7] Hartshorne, Robin Ample subvarieties of algebraic varieties 1970

[8] Kleiman, Steven L. Toward a numerical theory of ampleness Ann. of Math. (2) 1966 293 344

[9] Kollã¡R, Jã¡Nos Rational curves on algebraic varieties 1996

[10] Reid, Miles Canonical 3-folds 1980 273 310

[11] Smith, S. P., Stafford, J. T. Regularity of the four-dimensional Sklyanin algebra Compositio Math. 1992 259 289

[12] Stephenson, D. R. Artin-Schelter regular algebras of global dimension three J. Algebra 1996 55 73

[13] Stephenson, Darin R. Algebras associated to elliptic curves Trans. Amer. Math. Soc. 1997 2317 2340

[14] Stephenson, Darin R., Zhang, James J. Growth of graded Noetherian rings Proc. Amer. Math. Soc. 1997 1593 1605

[15] Vandergraft, James S. Spectral properties of matrices which have invariant cones SIAM J. Appl. Math. 1968 1208 1222

[16] Wehler, Joachim 𝐾3-surfaces with Picard number 2 Arch. Math. (Basel) 1988 73 82

Cité par Sources :