Hopkins, Michael 1 ; Kuhn, Nicholas 2 ; Ravenel, Douglas 3
@article{10_1090_S0894_0347_00_00332_5,
author = {Hopkins, Michael and Kuhn, Nicholas and Ravenel, Douglas},
title = {Generalized group characters and complex oriented cohomology theories},
journal = {Journal of the American Mathematical Society},
pages = {553--594},
year = {2000},
volume = {13},
number = {3},
doi = {10.1090/S0894-0347-00-00332-5},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00332-5/}
}
TY - JOUR AU - Hopkins, Michael AU - Kuhn, Nicholas AU - Ravenel, Douglas TI - Generalized group characters and complex oriented cohomology theories JO - Journal of the American Mathematical Society PY - 2000 SP - 553 EP - 594 VL - 13 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00332-5/ DO - 10.1090/S0894-0347-00-00332-5 ID - 10_1090_S0894_0347_00_00332_5 ER -
%0 Journal Article %A Hopkins, Michael %A Kuhn, Nicholas %A Ravenel, Douglas %T Generalized group characters and complex oriented cohomology theories %J Journal of the American Mathematical Society %D 2000 %P 553-594 %V 13 %N 3 %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00332-5/ %R 10.1090/S0894-0347-00-00332-5 %F 10_1090_S0894_0347_00_00332_5
Hopkins, Michael; Kuhn, Nicholas; Ravenel, Douglas. Generalized group characters and complex oriented cohomology theories. Journal of the American Mathematical Society, Tome 13 (2000) no. 3, pp. 553-594. doi: 10.1090/S0894-0347-00-00332-5
[1] Stable homotopy and generalised homology 1974
[2] Infinite loop spaces 1978
[3] Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture 1984 483 532
[4] Equivariant stable homotopy theory and idempotents of Burnside rings Publ. Res. Inst. Math. Sci. 1982 1193 1212
[5] Characters and cohomology of finite groups Inst. Hautes Études Sci. Publ. Math. 1961 23 64
[6] 𝐾-theory 1967
[7] , On equivariant Euler characteristics J. Geom. Phys. 1989 671 677
[8] , Liftings of formal groups and the Artinian completion of 𝑣_{𝑛}⁻¹𝐵𝑃 Math. Proc. Cambridge Philos. Soc. 1989 511 530
[9] Hecke algebras acting on elliptic cohomology 1998 17 26
[10] , On the rigidity theorems of Witten J. Amer. Math. Soc. 1989 137 186
[11] Kobordismentheorie klassifizierender Räume und Transformationsgruppen Math. Z. 1972 31 39
[12] Transformation groups and representation theory 1979
[13] Transformation groups 1987
[14] Formal groups and applications 1978
[15] Characters and elliptic cohomology 1989 87 104
[16] , , Morava 𝐾-theories of classifying spaces and generalized characters for finite groups 1992 186 209
[17] The Morava 𝐾-theories of wreath products Math. Proc. Cambridge Philos. Soc. 1990 309 318
[18] The algebras 𝐿²_{𝑛}(Γ), and the lattice of closed ideals of these algebras Ukrain. Mat. Ž. 1974
[19] Morava 𝐾-theory of classifying spaces: some calculations Topology 1997 1247 1273
[20] The Morava 𝐾-theories of some classifying spaces Trans. Amer. Math. Soc. 1987 193 205
[21] Character rings in algebraic topology 1989 111 126
[22] On the Burnside ring and stable cohomotopy of a finite group Math. Scand. 1979 37 72
[23] Complex bordism of classifying spaces Proc. Amer. Math. Soc. 1971 175 179
[24] , , Periodic cohomology theories defined by elliptic curves 1995 317 337
[25] Cyclotomic fields 1978
[26] , , , Equivariant stable homotopy theory 1986
[27] , Formal complex multiplication in local fields Ann. of Math. (2) 1965 380 387
[28] Completions of complex cobordism 1978 349 361
[29] Elliptic curves and modular forms in algebraic topology 1988
[30] The spectrum of an equivariant cohomology ring. I, II Ann. of Math. (2) 1971
[31] Morava 𝐾-theories and finite groups 1982 289 292
[32] Complex cobordism and stable homotopy groups of spheres 1986
[33] , The Morava 𝐾-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture Amer. J. Math. 1980 691 748
[34] Classifying spaces and spectral sequences Inst. Hautes Études Sci. Publ. Math. 1968 105 112
[35] Equivariant 𝐾-theory Inst. Hautes Études Sci. Publ. Math. 1968 129 151
[36] Equivariant stable homotopy theory 1971 59 63
[37] Représentations linéaires des groupes finis 1967
[38] Stable cohomotopy and cobordism of abelian groups Math. Proc. Cambridge Philos. Soc. 1981 273 278
[39] The Weierstrass condition for multiple integral variation problems Duke Math. J. 1939 656 660
[40] On Morava 𝐾-theories of Chevalley groups Amer. J. Math. 1995 263 278
[41] Harmonic functions in domains with multiple boundary points Amer. J. Math. 1939 609 632
[42] , Cohomology of finite groups and Brown-Peterson cohomology 1989 396 408
[43] Commutative ring-spectra of characteristic 2 Comment. Math. Helv. 1986 33 45
Cité par Sources :