Metric and isoperimetric problems in symplectic geometry
Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 411-431

Voir la notice de l'article provenant de la source American Mathematical Society

Our first result is a reduction inequality for the displacement energy. We apply it to establish some new results relating symplectic capacities and the volume of a Lagrangian submanifold in a number of different settings. In particular, we prove that a Lagrange submanifold always bounds a holomorphic disc of area less than $C_{n}\operatorname {vol}(L)^{2/n}$, where $C_{n}$ is some universal constant. We also explain how the Alexandroff-Bakelman-Pucci inequality is a special case of the above inequalities. Our inequality on displacement of reductions is also applied to yield a relation between length of billiard trajectories and volume of the domain. Two simple results concerning isoperimetric inequalities for convex domains and the closure of the symplectic group for the $W^{1/2,2}$ norm are included.
DOI : 10.1090/S0894-0347-00-00328-3

Viterbo, Claude 1

1 Département de Mathématiques, Bâtiment 425, Université de Paris-Sud, F-91405 Orsay Cedex, France
@article{10_1090_S0894_0347_00_00328_3,
     author = {Viterbo, Claude},
     title = {Metric and isoperimetric problems in symplectic geometry},
     journal = {Journal of the American Mathematical Society},
     pages = {411--431},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00328-3},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00328-3/}
}
TY  - JOUR
AU  - Viterbo, Claude
TI  - Metric and isoperimetric problems in symplectic geometry
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 411
EP  - 431
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00328-3/
DO  - 10.1090/S0894-0347-00-00328-3
ID  - 10_1090_S0894_0347_00_00328_3
ER  - 
%0 Journal Article
%A Viterbo, Claude
%T Metric and isoperimetric problems in symplectic geometry
%J Journal of the American Mathematical Society
%D 2000
%P 411-431
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00328-3/
%R 10.1090/S0894-0347-00-00328-3
%F 10_1090_S0894_0347_00_00328_3
Viterbo, Claude. Metric and isoperimetric problems in symplectic geometry. Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 411-431. doi: 10.1090/S0894-0347-00-00328-3

[1] Benci, V., Giannoni, F. Periodic bounce trajectories with a low number of bounce points Ann. Inst. H. Poincaré Anal. Non Linéaire 1989 73 93

[2] Bollobã¡S, Bã©La Linear analysis 1990

[3] Cabrã©, Xavier On the Alexandroff-Bakel′man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations Comm. Pure Appl. Math. 1995 539 570

[4] Caffarelli, Luis A., Cabrã©, Xavier Fully nonlinear elliptic equations 1995

[5] Chekanov, Yu. V. Lagrangian intersections, symplectic energy, and areas of holomorphic curves Duke Math. J. 1998 213 226

[6] Chen, Bang-Yen Geometry of submanifolds and its applications 1981

[7] Croke, Christopher B. Area and the length of the shortest closed geodesic J. Differential Geom. 1988 1 21

[8] Ekeland, I., Hofer, H. Symplectic topology and Hamiltonian dynamics Math. Z. 1989 355 378

[9] Ekeland, Ivar, Hofer, Helmut Symplectic topology and Hamiltonian dynamics. II Math. Z. 1990 553 567

[10] Gromov, M. Pseudo holomorphic curves in symplectic manifolds Invent. Math. 1985 307 347

[11] Hofer, H. On the topological properties of symplectic maps Proc. Roy. Soc. Edinburgh Sect. A 1990 25 38

[12] Ward, Morgan Ring homomorphisms which are also lattice homomorphisms Amer. J. Math. 1939 783 787

[13] Lalonde, Franã§Ois, Sikorav, Jean-Claude Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents Comment. Math. Helv. 1991 18 33

[14] Laudenbach, Franã§Ois, Sikorav, Jean-Claude Persistance d’intersection avec la section nulle au cours d’une isotopie hamiltonienne dans un fibré cotangent Invent. Math. 1985 349 357

[15] Oh, Yong-Geun Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds Invent. Math. 1990 501 519

[16] Oh, Yong-Geun Volume minimization of Lagrangian submanifolds under Hamiltonian deformations Math. Z. 1993 175 192

[17] Polterovich, Leonid Symplectic displacement energy for Lagrangian submanifolds Ergodic Theory Dynam. Systems 1993 357 367

[18] Polterovich, L. The surgery of Lagrange submanifolds Geom. Funct. Anal. 1991 198 210

[19] Reznikov, Alexander G. Affine symplectic geometry. I. Applications to geometric inequalities Israel J. Math. 1992 207 224

[20] Santalã³, Luis A. Integral geometry and geometric probability 1976

[21] Viterbo, Claude Symplectic topology as the geometry of generating functions Math. Ann. 1992 685 710

[22] Viterbo, Claude Capacités symplectiques et applications (d’après Ekeland-Hofer, Gromov) Astérisque 1989

[23] Viterbo, C. A new obstruction to embedding Lagrangian tori Invent. Math. 1990 301 320

Cité par Sources :