Voir la notice de l'article provenant de la source American Mathematical Society
@article{10_1090_S0894_0347_00_00328_3,
author = {Viterbo, Claude},
title = {Metric and isoperimetric problems in symplectic geometry},
journal = {Journal of the American Mathematical Society},
pages = {411--431},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2000},
doi = {10.1090/S0894-0347-00-00328-3},
url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00328-3/}
}
TY - JOUR AU - Viterbo, Claude TI - Metric and isoperimetric problems in symplectic geometry JO - Journal of the American Mathematical Society PY - 2000 SP - 411 EP - 431 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00328-3/ DO - 10.1090/S0894-0347-00-00328-3 ID - 10_1090_S0894_0347_00_00328_3 ER -
%0 Journal Article %A Viterbo, Claude %T Metric and isoperimetric problems in symplectic geometry %J Journal of the American Mathematical Society %D 2000 %P 411-431 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00328-3/ %R 10.1090/S0894-0347-00-00328-3 %F 10_1090_S0894_0347_00_00328_3
Viterbo, Claude. Metric and isoperimetric problems in symplectic geometry. Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 411-431. doi: 10.1090/S0894-0347-00-00328-3
[1] , Periodic bounce trajectories with a low number of bounce points Ann. Inst. H. Poincaré Anal. Non Linéaire 1989 73 93
[2] Linear analysis 1990
[3] On the Alexandroff-Bakelâ²man-Pucci estimate and the reversed Hölder inequality for solutions of elliptic and parabolic equations Comm. Pure Appl. Math. 1995 539 570
[4] , Fully nonlinear elliptic equations 1995
[5] Lagrangian intersections, symplectic energy, and areas of holomorphic curves Duke Math. J. 1998 213 226
[6] Geometry of submanifolds and its applications 1981
[7] Area and the length of the shortest closed geodesic J. Differential Geom. 1988 1 21
[8] , Symplectic topology and Hamiltonian dynamics Math. Z. 1989 355 378
[9] , Symplectic topology and Hamiltonian dynamics. II Math. Z. 1990 553 567
[10] Pseudo holomorphic curves in symplectic manifolds Invent. Math. 1985 307 347
[11] On the topological properties of symplectic maps Proc. Roy. Soc. Edinburgh Sect. A 1990 25 38
[12] Ring homomorphisms which are also lattice homomorphisms Amer. J. Math. 1939 783 787
[13] , Sous-variétés lagrangiennes et lagrangiennes exactes des fibrés cotangents Comment. Math. Helv. 1991 18 33
[14] , Persistance dâintersection avec la section nulle au cours dâune isotopie hamiltonienne dans un fibré cotangent Invent. Math. 1985 349 357
[15] Second variation and stabilities of minimal Lagrangian submanifolds in Kähler manifolds Invent. Math. 1990 501 519
[16] Volume minimization of Lagrangian submanifolds under Hamiltonian deformations Math. Z. 1993 175 192
[17] Symplectic displacement energy for Lagrangian submanifolds Ergodic Theory Dynam. Systems 1993 357 367
[18] The surgery of Lagrange submanifolds Geom. Funct. Anal. 1991 198 210
[19] Affine symplectic geometry. I. Applications to geometric inequalities Israel J. Math. 1992 207 224
[20] Integral geometry and geometric probability 1976
[21] Symplectic topology as the geometry of generating functions Math. Ann. 1992 685 710
[22] Capacités symplectiques et applications (dâaprès Ekeland-Hofer, Gromov) Astérisque 1989
[23] A new obstruction to embedding Lagrangian tori Invent. Math. 1990 301 320
Cité par Sources :