The enumerative geometry of 𝐾3 surfaces and modular forms
Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 371-410

Voir la notice de l'article provenant de la source American Mathematical Society

Let $X$ be a $K3$ surface, and let $C$ be a holomorphic curve in $X$ representing a primitive homology class. We count the number of curves of geometric genus $g$ with $n$ nodes passing through $g$ generic points in $X$ in the linear system $\left | C\right |$ for any $g$ and $n$ satisfying $C\cdot C=2g+2n-2$. When $g=0$, this coincides with the enumerative problem studied by Yau and Zaslow who obtained a conjectural generating function for the numbers. Recently, Göttsche has generalized their conjecture to arbitrary $g$ in terms of quasi-modular forms. We prove these formulas using Gromov-Witten invariants for families, a degeneration argument, and an obstruction bundle computation. Our methods also apply to $\mathbf {P}^{2}$ blown up at 9 points where we show that the ordinary Gromov-Witten invariants of genus $g$ constrained to $g$ points are also given in terms of quasi-modular forms.
DOI : 10.1090/S0894-0347-00-00326-X

Bryan, Jim 1 ; Leung, Naichung 2

1 Department of Mathematics, Tulane University, 6823 St. Charles Ave., New Orleans, Louisiana 70118
2 School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
@article{10_1090_S0894_0347_00_00326_X,
     author = {Bryan, Jim and Leung, Naichung},
     title = {The enumerative geometry of {\dh}{\textthreequarters}3 surfaces and modular forms},
     journal = {Journal of the American Mathematical Society},
     pages = {371--410},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2000},
     doi = {10.1090/S0894-0347-00-00326-X},
     url = {http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00326-X/}
}
TY  - JOUR
AU  - Bryan, Jim
AU  - Leung, Naichung
TI  - The enumerative geometry of 𝐾3 surfaces and modular forms
JO  - Journal of the American Mathematical Society
PY  - 2000
SP  - 371
EP  - 410
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00326-X/
DO  - 10.1090/S0894-0347-00-00326-X
ID  - 10_1090_S0894_0347_00_00326_X
ER  - 
%0 Journal Article
%A Bryan, Jim
%A Leung, Naichung
%T The enumerative geometry of 𝐾3 surfaces and modular forms
%J Journal of the American Mathematical Society
%D 2000
%P 371-410
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1090/S0894-0347-00-00326-X/
%R 10.1090/S0894-0347-00-00326-X
%F 10_1090_S0894_0347_00_00326_X
Bryan, Jim; Leung, Naichung. The enumerative geometry of 𝐾3 surfaces and modular forms. Journal of the American Mathematical Society, Tome 13 (2000) no. 2, pp. 371-410. doi: 10.1090/S0894-0347-00-00326-X

[1] Barth, W., Peters, C., Van De Ven, A. Compact complex surfaces 1984

[2] Behrend, K. Gromov-Witten invariants in algebraic geometry Invent. Math. 1997 601 617

[3] Behrend, K., Fantechi, B. The intrinsic normal cone Invent. Math. 1997 45 88

[4] Behrend, K., Manin, Yu. Stacks of stable maps and Gromov-Witten invariants Duke Math. J. 1996 1 60

[5] Bershadsky, M., Vafa, C., Sadov, V. D-branes and topological field theories Nuclear Phys. B 1996 420 434

[6] Besse, Arthur L. Einstein manifolds 1987

[7] Donaldson, S. K. Yang-Mills invariants of four-manifolds 1990 5 40

[8] Fantechi, B., Gã¶Ttsche, L., Van Straten, D. Euler number of the compactified Jacobian and multiplicity of rational curves J. Algebraic Geom. 1999 115 133

[9] Friedman, Robert, Morgan, John W. Smooth four-manifolds and complex surfaces 1994

[10] Gã¶Ttsche, Lothar The Betti numbers of the Hilbert scheme of points on a smooth projective surface Math. Ann. 1990 193 207

[11] Gã¶Ttsche, L., Pandharipande, R. The quantum cohomology of blow-ups of 𝑃² and enumerative geometry J. Differential Geom. 1998 61 90

[12] Hartshorne, Robin Residues and duality 1966

[13] Li, Jun, Tian, Gang Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties J. Amer. Math. Soc. 1998 119 174

[14] Lian, Bong H., Liu, Kefeng, Yau, Shing-Tung Mirror principle. I Asian J. Math. 1997 729 763

[15] Ruan, Yongbin, Tian, Gang A mathematical theory of quantum cohomology J. Differential Geom. 1995 259 367

[16] Weibel, Charles A. An introduction to homological algebra 1994

[17] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I Comm. Pure Appl. Math. 1978 339 411

[18] Yau, Shing-Tung, Zaslow, Eric BPS states, string duality, and nodal curves on 𝐾3 Nuclear Phys. B 1996 503 512

Cité par Sources :