Voir la notice de l'article provenant de la source Numdam
Optimizing a linear function over the efficient set of a Multiple Objective Integer Linear Programming (MOILP) problem is known as a difficult problem to deal with, since a discrete efficient set is generally not convex and not explicitly known. Such problem becomes more and more difficult when parameters are defined with uncertainty. In this work, we deal with problems of this type for which parameters are imprecise and are assumed to be trapezoidal fuzzy numbers. The method is based on possibility and necessity measures introduced in the literature by D. Dubois and H. Prade.
@article{RO_2020__54_5_1437_0, author = {Menni, Assia and Chaabane, Djamal}, title = {A possibilistic optimization over an integer efficient set within a fuzzy environment}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {1437--1452}, publisher = {EDP-Sciences}, volume = {54}, number = {5}, year = {2020}, doi = {10.1051/ro/2019077}, mrnumber = {4126315}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2019077/} }
TY - JOUR AU - Menni, Assia AU - Chaabane, Djamal TI - A possibilistic optimization over an integer efficient set within a fuzzy environment JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2020 SP - 1437 EP - 1452 VL - 54 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2019077/ DO - 10.1051/ro/2019077 LA - en ID - RO_2020__54_5_1437_0 ER -
%0 Journal Article %A Menni, Assia %A Chaabane, Djamal %T A possibilistic optimization over an integer efficient set within a fuzzy environment %J RAIRO - Operations Research - Recherche Opérationnelle %D 2020 %P 1437-1452 %V 54 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2019077/ %R 10.1051/ro/2019077 %G en %F RO_2020__54_5_1437_0
Menni, Assia; Chaabane, Djamal. A possibilistic optimization over an integer efficient set within a fuzzy environment. RAIRO - Operations Research - Recherche Opérationnelle, Tome 54 (2020) no. 5, pp. 1437-1452. doi : 10.1051/ro/2019077. http://geodesic.mathdoc.fr/articles/10.1051/ro/2019077/
[1] Optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 174 (2006) 1140–1161. | MR | Zbl | DOI
and ,[2] Decision–making in a fuzzy environment. Manage. Sci. 17 (1970) 141–164. | MR | Zbl | DOI
and ,[3] Existence of efficient solutions for vector maximization problems. J. Optim. Theory Appl. 26 (1978) 569–580. | MR | Zbl | DOI
,[4] Optimization over the Efficient Set. J. Math. Anal. App. 98 (1984) 562–580. | MR | Zbl | DOI
,[5] Optimization over the efficient set: four special cases. J. Optim. Theory Appl. 80 (1994) 3–18. | MR | Zbl | DOI
and ,[6] Optimization of a linear function over the set of stochastic efficient solutions. Comput. Manage. Sci. 11 (2014) 157–178. | MR | Zbl | DOI
and ,[7] A Method for optimizing over the integer efficient set. J. Ind. Manage. Optim. 6 (2010) 811–823. | MR | Zbl | DOI
and ,[8] The augmented weighted Tchebychev norm for optimizing a linear function over an integer efficient set of a multicriteria linear program. Int. Trans. Oper. Res. 19 (2012) 531–545. | MR | Zbl | DOI
, and ,[9] Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978) 613–626. | MR | Zbl | DOI
and ,[10] Fuzzy Sets and Systems: Theory and Applications. In: Vol. 144. Academic Press, Georgia Institute of Technology (1980). | MR | Zbl
and ,[11] Ranking fuzzy numbers in the setting of possibility theory. Inf. Sci. 30 (1983) 183–224. | MR | Zbl | DOI
and ,[12] Optimizing a linear function over an efficient set. J. Optim. Theory Appl. 83 (1994) 541–563. | MR | Zbl | DOI
and ,[13] Multiple Criteria Decision Analysis: Stat of the Art Surveys. Springer, Boston (2005). | Zbl
, and ,[14] On optimization over the efficient set in linear multicriteria programming. J. Optim. Theory Appl. 134 (2007) 433–443. | MR | Zbl | DOI
, , and ,[15] Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test. Fuzzy Sets Syst. 78 (1996) 231–241. | MR | Zbl | DOI
and ,[16] A bilinear algorithm for optimizing a linear function over the efficient set of a multiple objective linear programming problem. J. Global Optim. 31 (2005) 1–16. | MR | Zbl | DOI
,[17] An algorithm for optimizing a linear function over an integer efficient set. Eur. J. Oper. Res. 195 (2009) 98–103. | MR | Zbl | DOI
,[18] A new algorithm for generating all nondominated solutions of multiobjective discrete optimization problems. Eur. J. Oper. Res. 232 (2014) 479–88. | MR | Zbl | DOI
and ,[19] An Algorithm for Optimizing a Linear Function over the Integer Efficient Set. Konrad-Zuse-Zentrum fur Informationstechnik Berlin (1992).
,[20] Fuzzy sets and interactive multiobjective optimization. In: Applied Information Technology, Springer (1993). | MR | Zbl
,[21] An interactive fuzzy satisficing method for multiobjective linear-programming problems and its application. IEEE Trans. Syst. Man Cybern. 17 (1987) 654–661. | MR | DOI
, and ,[22] Fuzzy Stochastic Multiobjective Programming. Springer, New York 159 (2011). | MR | Zbl | DOI
, and ,[23] Multiple Criteria Optimization: Theory, Computation and Application. Wiley, New York (1986). | MR | Zbl
,[24] A method for finding the set of non-dominated vectors for multiple objective integer linear programs. Eur. J. Oper. Res. 158 (2004) 46–55. | MR | Zbl | DOI
and ,[25] Fuzzy mathematical programming (in Japanese). Trans. Soc. Instrum. Control Eng. 9 (1973) 607–613. | DOI
, and ,[26] On Fuzzy-Mathematical programming. J. Cybern. 3 (1973) 37–46. | MR | Zbl | DOI
, and ,[27] Programmation linéaire (Linear Programming). Ellipses, Université de Bruxelles (1996). | Zbl
,[28] Optimization over the efficient set: overview. J. Global Optim. 22 (2002) 285–317. | MR | Zbl | DOI
,[29] Fuzzy sets. Inf. Control 8 (1965) 38–353. | MR | Zbl | DOI
,[30] Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2 (1975) 209–215. | Zbl | DOI
,[31] Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1 (1978) 45–55. | MR | Zbl | DOI
,[32] Fuzzy Set Theory and its Applications. Kluwer Academic Publishers, Springer, New York (1996). | Zbl | DOI
,Cité par Sources :