A guide to conic optimisation and its applications
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1087-1106.

Voir la notice de l'article provenant de la source Numdam

Most OR academics and practitioners are familiar with linear programming (LP) and its applications. Many are however unaware of conic optimisation, which is a powerful generalisation of LP, with a prodigious array of important real-life applications. In this invited paper, we give a gentle introduction to conic optimisation, followed by a survey of applications in OR and related areas. Along the way, we try to help the reader develop insight into the strengths and limitations of conic optimisation as a tool for solving real-life problems.

DOI : 10.1051/ro/2018034
Classification : 90-01, 90C22, 90C90
Keywords: Conic optimisation, second-order cone programming, semidefinite programming

Letchford, Adam N. 1 ; Parkes, Andrew J. 1

1
@article{RO_2018__52_4-5_1087_0,
     author = {Letchford, Adam N. and Parkes, Andrew J.},
     title = {A guide to conic optimisation and its applications},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {1087--1106},
     publisher = {EDP-Sciences},
     volume = {52},
     number = {4-5},
     year = {2018},
     doi = {10.1051/ro/2018034},
     mrnumber = {3878619},
     zbl = {1411.90256},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2018034/}
}
TY  - JOUR
AU  - Letchford, Adam N.
AU  - Parkes, Andrew J.
TI  - A guide to conic optimisation and its applications
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2018
SP  - 1087
EP  - 1106
VL  - 52
IS  - 4-5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro/2018034/
DO  - 10.1051/ro/2018034
LA  - en
ID  - RO_2018__52_4-5_1087_0
ER  - 
%0 Journal Article
%A Letchford, Adam N.
%A Parkes, Andrew J.
%T A guide to conic optimisation and its applications
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2018
%P 1087-1106
%V 52
%N 4-5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro/2018034/
%R 10.1051/ro/2018034
%G en
%F RO_2018__52_4-5_1087_0
Letchford, Adam N.; Parkes, Andrew J. A guide to conic optimisation and its applications. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1087-1106. doi : 10.1051/ro/2018034. http://geodesic.mathdoc.fr/articles/10.1051/ro/2018034/

[1] F. Alizadeh, Interior point methods in semidefinite programming with applications to combinatorial optimization. SIAM J. Optim. 5 (1995) 13–51. | MR | Zbl | DOI

[2] F. Alizadeh and D. Goldfarb, Second-order cone programming. Math. Program. 95 (2003) 3–51. | MR | Zbl | DOI

[3] F. Alizadeh, J.-P.A. Haeberly and M.L. Overton, Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77 (1997) 111–128. | MR | Zbl | DOI

[4] M. Anjos and J.B. Lasserre, Handbook on Semidefinite, Conic and Polynomial Optimization. Vol. 166 of International Series in OR/MS. Springer, New York (2012). | MR | Zbl

[5] K.M. Anstreicher, Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43 (2009) 471–484. | MR | Zbl | DOI

[6] K.M. Anstreicher, On convex relaxations for quadratically constrained quadratic programming. Math. Program. 136 (2012) 233–251. | MR | Zbl | DOI

[7] K.M. Anstreicher and S. Burer, Computable representations for convex hulls of low-dimensional quadratic forms. Math. Program. 124 (2010) 33–43. | MR | Zbl | DOI

[8] D. Avis and J. Umemoto, Stronger linear programming relaxations of max-cut. Math. Program. (2003) 97 451–469. | MR | Zbl | DOI

[9] X. Bao, N.V. Sahinidis and M. Tawarmalani, Semidefinite relaxations for quadratically constrained quadratic programming: a review and comparisons. Math. Program. 129 (2011) 129–157. | MR | Zbl | DOI

[10] S.J. Benson, Y. Ye and X. Zhang, Solving large-scale sparse semidefinite programs for combinatorial optimization. SIAM J. Optim. 10 (2000) 443–461. | MR | Zbl | DOI

[11] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs. Oper. Res. Lett. 25 (1999) 1–13. | MR | Zbl | DOI

[12] A. Ben-Tal and A. Nemirovski, On polyhedral approximations of the second order cone. Math. Oper. Res. 26 (2001) 193–205. | MR | Zbl | DOI

[13] D. Bertsekas, Nonlinear Programming, 3rd edn. Athena Scientific, Bellmont, MA (2016). | MR | Zbl

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, Cambridge (2004). | MR | Zbl | DOI

[15] G. Braun, S. Fiorini, S. Pokutta and D. Steurer, Approximation limits of linear programs (beyond hierarchies). Math. Oper. Res. 40 (2015) 756–772. | MR | Zbl | DOI

[16] S. Burer, On the copositive representation of binary and continuous nonconvex quadratic programs. Math. Program. 120 (2009) 479–495. | MR | Zbl | DOI

[17] S. Burer, Copositive programming, in Handbook on Semidefinite, Conic and Polynomial Optimization, edited by M. Anjos and J.B. Lasserre. Springer, New York (2012) 201–218. | MR | DOI

[18] S. Burer and A.N. Letchford, On non-convex quadratic programming with box constraints. SIAM J. Optim. 20 (2009) 1073–1089. | MR | Zbl | DOI

[19] S. Burer and R.D.C. Monteiro, Local minima and convergence in low-rank semidefinite programming. Math. Program. 103 (2005) 427–444. | MR | Zbl | DOI

[20] S.A. Burer and D. Vandenbussche, A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113 (2008) 259–282. | MR | Zbl | DOI

[21] V. Chandrasekaran and P. Shah, Relative entropy optimization and its applications. Math. Program. 161 (2017) 1–32. | MR | Zbl | DOI

[22] G.B. Dantzig, Maximization of a linear function of variables subject to linear inequalities, in Activity Analysis of Production and Allocation, edited by T.C. Koopmans. Wiley, New York (1951) 339–347. | MR | Zbl

[23] G.B. Dantzig, Programming and Extensions. Princeton University Press, Princeton, NJ (1963). | MR | Zbl

[24] E. De Klerk, R. Sotirov and U. Truetsch, A new semidefinite programming relaxation for the quadratic assignment problem and its computational perspectives. INFORMS J. Comput. 27 (2015) 378–391. | MR | Zbl | DOI

[25] J.A. De Loera, R. Hemmecke and M. Köppe, Algebraic and Geometric Ideas in the Theory of Discrete Optimization. Vol. 14 of SIAM-MOS Series on Optimization. SIAM, Philadelphia, PA (2013). | MR | Zbl

[26] C. Delorme and S. Poljak, Combinatorial properties and the complexity of an eigenvalue approximation of the max-cut problem. Eur. J. Combin. 14 (1993) 313–333. | MR | Zbl | DOI

[27] M.M. Deza and M. Laurent, Geometry of Cuts and Metrics. Springer-Verlag, Berlin (1997). | MR | Zbl | DOI

[28] M. Dür,Copositive programming: a survey, in Recent Advances in Optimization and its Applications in Engineering, edited by M. Diehl et al. Springer, Berlin (2010) 3–20. | DOI

[29] T. Fujie and M. Kojima, Semidefinite programming relaxation for nonconvex quadratic programs. J. Glob. Optim. 10 (1997) 367–380. | MR | Zbl | DOI

[30] L. Galli, K. Kaparis and A.N. Letchford, Complexity results for the gap inequalities for the max-cut problem. Oper. Res. Lett. 40 (2012) 149–152. | MR | Zbl | DOI

[31] M.R. Garey, D.S. Johnson and L. Stockmeyer, Some simplified NP-complete graph problems. Theor. Comput. Sci. 1 (1976) 237–267. | MR | Zbl | DOI

[32] F. Glineur, An extended conic formulation for geometric optimization. Found. Comput. Decis. Sci. 25 (2000) 161–174. | MR | Zbl

[33] F. Glineur and T. Terlaky, Conic formulation for ℓp-norm optimization. J. Optim. Th. Appl. 122 (2004) 285–307. | MR | Zbl | DOI

[34] M.X. Goemans, Semidefinite programming in combinatorial optimization. Math. Program. 79 (1997) 143–161. | MR | Zbl | DOI

[35] M.X. Goemans and F. Rendl, Combinatorial optimization, in Handbook of Semidefinite Programming, edited by H. Wolkowicz, E. Saigal and L. Vandenberghe. Springer, New York (2000) 343–360. | MR | Zbl | DOI

[36] M.X. Goemans and D. Williamson, Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42 (1995) 1115–1145. | MR | Zbl | DOI

[37] J. Gondzio, Interior point methods 25 years later. Eur. J. Oper. Res. 218 (2012) 587–601. | MR | Zbl | DOI

[38] M. Grötschel, L. Lovász and A.J. Schrijver, The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981) 169–197. | MR | Zbl | DOI

[39] M. Grötschel, L. Lovász and A.J. Schrijver, Geometric Algorithms and Combinatorial Optimization. Wiley, New York (1988). | MR | Zbl | DOI

[40] M. Hall Jr., Discrete problems, in A Survey of Numerical Analysis, edited by J. Todd. McGraw-Hill, New York (1962) 518–542. | MR

[41] F.M. Harris, How many parts to make at once. Factory 10 (1913) 135–136, 152.

[42] J. Håstad, Clique is hard to approximate within n1−ϵ. Acta Math. 182 (1999) 105–142. | MR | Zbl | DOI

[43] C. Helmberg, Fixing variables in semidefinite relaxations. SIAM J. Matrix Anal. Appl. 21 (2000) 952–969. | MR | Zbl | DOI

[44] C. Helmberg, Semidefinite programming. Eur. J. Oper. Res. 137 (2002) 461–482. | MR | Zbl | DOI

[45] C. Helmberg and F. Rendl, Solving quadratic (0, 1)-programs by semidefinite programs and cutting planes. Math. Program. 82 (1998) 291–315. | MR | Zbl | DOI

[46] C. Helmberg and F. Rendl, A spectral bundle method for semidenite programming. SIAM J. Optim. 10 (1999) 673–696. | MR | Zbl | DOI

[47] N. Higham, Computing the nearest correlation matrix—A problem from finance. IMA J. Numer. Anal. 22 (2002) 329–343. | MR | Zbl | DOI

[48] R.A. Horn, Matrix Analysis, 2nd edn. Cambridge University Press, Cambridge (2012). | MR | Zbl | DOI

[49] R. Horst, P.M. Pardalos and N. Thoai, Introduction to Global Optimization, 2nd edn. Kluwer, Dortrecht (2000). | MR | DOI

[50] C.R. Johnson, Matrix completion problems: a survey, in Matrix Theory and Applications, edited by C.R. Johnson. American Mathematical Society, Providence, RI (1990) 171–198. | MR | Zbl | DOI

[51] L.G. Khachiyan, A polynomial algorithm in linear programming. Soviet Math. Doklady 20 (1979) 191–194. | Zbl

[52] K. Krishnan and J.E. Mitchell, A unifying framework for several cutting plane methods for semidefinite programming. Optim. Meth. Soft. 21 (2006) 57–74. | MR | Zbl | DOI

[53] Y.-J. Kuo and H.D. Mittelmann, Interior-point methods for second-order cone programming and OR applications. Comput. Optim. Appl. 28 (2004) 255–285. | MR | Zbl | DOI

[54] J.B. Lasserre, Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11 (2001) 796–817. | MR | Zbl | DOI

[55] M. Laurent, A connection betweeen positive semidefinite and Euclidean distance matrix completion problems. Lin. Alg. Appl. 273 (1998) 9–22. | MR | Zbl | DOI

[56] M. Laurent, A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0–1 programming. Math. Oper. Res. 28 (2003) 470–496. | MR | Zbl | DOI

[57] M. Laurent and S. Poljak, On a positive semidefinite relaxation of the cut polytope. Lin. Alg. Appl. 223/224 (1995) 439–461. | MR | Zbl | DOI

[58] M. Laurent and S. Poljak, Gap inequalities for the cut polytope. Eur. J. Combin. 17 (1996) 233–254. | MR | Zbl | DOI

[59] M. Laurent and F. Rendl, Semidefinite programming and integer programming, in Handbook on Discrete Optimization, edited by K. Aardal et al. Elsevier Amsterdam (2005) 393–514. | Zbl | DOI

[60] C. Lémaréchal and F. Oustry, SDP relaxations in combinatorial optimization from a Lagrangian viewpoint, in Advances in Convex Analysis and Global Optimization, edited by N. Hadjisawas and P.M. Pardalos. Kluwer, Dortrecht (2001) 119–134. | MR | Zbl | DOI

[61] L. Liberti, C. Lavor, N. Maculan and A. Mucherino, Euclidean distance geometry and applications. SIAM Rev. 56 (2014) 3–69. | MR | Zbl | DOI

[62] M.S. Lobo, L. Vandenberghe, S. Boyd and H. Lebret, Applications of second-order cone programming. Lin. Alg. Appl. 284 (1998) 193–228. | MR | Zbl | DOI

[63] L. Lovász, On the Shannon capacity of a graph. IEEE Trans. Inform. Th. IT-25 (1979) 1–7. | MR | Zbl | DOI

[64] L. Lovász, Semidefinite programs and combinatorial optimization, in Recent Advances in Algorithms and Combinatorics, edited by B. Reed and C.L. Sales. Springer, New York (2003) 137–194. | MR | Zbl

[65] L. Lovász and A.J. Schrijver, Cones of matrices and set-functions and 0–1 optimization. SIAM J. Optim. 1 (1991) 166–190. | MR | Zbl | DOI

[66] Z.-Q. Luo, W.-K. Ma, A.M.-C. So, Y. Ye and S. Zhang, Semidefinite relaxation of quadratic optimization problems. IEEE Signal Process. Mag. 27 (2010) 20–34. | DOI

[67] J. Malick, J. Povh, F. Rendl and A. Wiegele, Regularization methods for semidefinite programming. SIAM J. Optim. 20 (2009) 336–356. | MR | Zbl | DOI

[68] H.M. Markowitz, Portfolio selection. J. Finance 7 (1952) 77–91.

[69] J.E. Mitchell, Restarting after branching in the SDP approach to MAX-CUT and similar combinatorial optimization problems. J. Combin. Optim. 5 (2001) 151–166. | MR | Zbl | DOI

[70] H.D. Mittelmann, The state-of-the-art in conic optimization software, in Handbook on Semidefinite, Conic and Polynomial Optimization, edited by M. Anjos and J.B. Lasserre. Springer, New York (2012) 671–686. | MR | DOI

[71] T.S. Motzkin, Copositive quadratic forms. Nat. Bur. Stand. Rep. 1818 (1952) 11–22.

[72] K.G. Murty and S.N. Kabadi, Some 𝒩𝒫 -complete problems in quadratic and nonlinear programming. Math. Program. 39 (1987) 117–129. | MR | Zbl | DOI

[73] Y. Nesterov and A. Nemirovsky, Interior Point Methods in Convex Programming: Theory and Applications. SIAM Press, Philadelphia, PA (1994). | MR

[74] Y. Nesterov, H. Wolkowicz and Y. Ye, Semidefinite Programming Relaxations of Nonconvex Quadratic Optimization, in Handbook of Semidefinite Programming, edited by H. Wolkowicz, E. Saigal and L. Vandenberghe. Springer, New York (2000) 361–419. | MR | Zbl | DOI

[75] J. Nie, K. Ranestad and B. Sturmfels, The algebraic degree of semidefinite programming. Math. Program. 122 (2010) 379–405. | MR | Zbl | DOI

[76] R. O’Donnell, SOS is not Obviously Automatizable, Even Approximately. ECCC Report No. 141 (2016). | MR

[77] M.W. Padberg, On the facial structure of set packing polyhedra. Math. Program. 5 (1973) 199–215. | MR | Zbl | DOI

[78] P. Parrilo, Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96 (2003) 293–320. | MR | Zbl | DOI

[79] S. Poljak and F. Rendl, Non-polyhedral relaxations of graph-bisection problems. SIAM J. Optim. 5 (1995) 467–487. | MR | Zbl | DOI

[80] S. Poljak, F. Rendl and H. Wolkowicz, A recipe for semidefinite relaxation for (0, 1)-quadratic programming. J. Glob. Optim. 7 (1995) 51–73. | MR | Zbl | DOI

[81] S. Poljak and Zs. Tuza, The expected relative error of the polyhedral approximation of the max-cut problem. Oper. Res. Lett. 16 (1994) 191–198. | MR | Zbl | DOI

[82] J. Povh, F. Rendl and A. Wiegele, A boundary point method to solve semidefinite programs. Computing, 78 (2009) 277–286. | MR | Zbl | DOI

[83] M. Ramana, An Algorithmic Analysis of Multiquadratic and Semidefinite Programming Problems. PhD thesis, Johns Hopkins University, Baltimore, MD (1993). | MR

[84] M.V. Ramana, An exact duality theory for semidefinite programming and its complexity implications. Math. Program. 77 (1997) 129–162. | MR | Zbl | DOI

[85] F. Rendl, Semidefinite relaxations for integer programming, in 50 Years of Integer Programming 1958-2008, edited by M. Jünger et al. Springer, Heidelberg (2010) 687–726. | Zbl | DOI

[86] F. Rendl, Semidefinite relaxations for partitioning, assignment and ordering problems. 4OR 10 (2012) 321–346. | MR | Zbl | DOI

[87] I.J. Schoenberg, Metric spaces and positive definite functions. Trans. Amer. Math. Soc. 44 (1938) 522–536. | MR | JFM | DOI

[88] C. Seligman, Online Astronomy Text. Available at: http://cseligman.com/text/history/ellipses.htm (1993).

[89] H.D. Sherali and W.P. Adams, A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems. SIAM J. Discr. Math. 3 (1990) 411–430. | MR | Zbl | DOI

[90] N.Z. Shor, Quadratic optimization problems. Sov. J. Comput. Syst. Sci. 25 (1987) 1–11. | MR | Zbl

[91] N.Z. Shor, Dual quadratic estimates in polynomial and Boolean programming. Ann. Oper. Res. 25 (1990) 163–168. | MR | Zbl | DOI

[92] A. Skajaa, E.D. Andersen and Y. Ye, Warmstarting the homogeneous and self-dual interior point method for linear and conic quadratic problems. Math. Program. Comput. 5(2013) 1–25. | MR | Zbl | DOI

[93] M.J. Todd, Semidefinite optimization. Acta Numerica 10 (2001) 515–560. | MR | Zbl | DOI

[94] L. Vanderberghe and S. Boyd, Semidefinite programming. SIAM Rev. 38 (1996) 49–95. | MR | Zbl | DOI

[95] P. Wang, C. Shen, A. Van Den Hengel and P.H.S. Torr, Large-scale binary quadratic optimization using semidefinite relaxation and applications. IEEE Trans. Patt. Anal. Mach. Intel. 39 (2017) 470–485. | DOI

[96] Z. Wen,D. Goldfarb and W. Yin, Alternating direction augmented Lagrangian methods for semidefinite programming. Math. Program. Comput. 2 (2010) 203–230. | MR | Zbl | DOI

[97] H. Wolkowicz, E. Saigal and L. Vandenberghe, Handbook of Semidefinite Programming. Vol. 27 of International Series in OR/MS. Springer, New York (2000). | MR | Zbl

[98] H. Wolkowicz and M.F. Anjos, Semidefinite programming for discrete optimization and matrix completion problems. Discr. Appl. Math. 123 (2002) 513–577 | MR | Zbl | DOI

[99] H. Ziegler, Solving certain singly constrained convex optimization problems in production planning. Oper. Res. Lett. 1 (1982) 246–252. | MR | Zbl | DOI

Cité par Sources :