Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential
RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1019-1041
Voir la notice de l'article provenant de la source Numdam
The main aim of this paper is to study strong Karush–Kuhn–Tucker (KKT) optimality conditions for nonsmooth multiobjective semi-infinite programming (MSIP) problems. By using tangential subdifferential and suitable regularity conditions, we establish some strong necessary optimality conditions for some types of efficient solutions of nonsmooth MSIP problems. In addition to the theoretical results, some examples are provided to illustrate the advantages of our outcomes.
Reçu le :
Accepté le :
DOI : 10.1051/ro/2018020
Accepté le :
DOI : 10.1051/ro/2018020
Classification :
90C32, 90C29, 49K99
Keywords: Multiobjective semi-infinite programming, efficient solution, weakly efficient solution, strong Karush–Kuhn–Tucker optimality conditions, tangential subdifferential
Keywords: Multiobjective semi-infinite programming, efficient solution, weakly efficient solution, strong Karush–Kuhn–Tucker optimality conditions, tangential subdifferential
Affiliations des auteurs :
Tung, Le Thanh 1
@article{RO_2018__52_4-5_1019_0,
author = {Tung, Le Thanh},
title = {Strong {Karush{\textendash}Kuhn{\textendash}Tucker} optimality conditions for multiobjective semi-infinite programming via tangential subdifferential},
journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
pages = {1019--1041},
publisher = {EDP-Sciences},
volume = {52},
number = {4-5},
year = {2018},
doi = {10.1051/ro/2018020},
mrnumber = {3878617},
zbl = {1411.90334},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2018020/}
}
TY - JOUR AU - Tung, Le Thanh TI - Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2018 SP - 1019 EP - 1041 VL - 52 IS - 4-5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2018020/ DO - 10.1051/ro/2018020 LA - en ID - RO_2018__52_4-5_1019_0 ER -
%0 Journal Article %A Tung, Le Thanh %T Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential %J RAIRO - Operations Research - Recherche Opérationnelle %D 2018 %P 1019-1041 %V 52 %N 4-5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2018020/ %R 10.1051/ro/2018020 %G en %F RO_2018__52_4-5_1019_0
Tung, Le Thanh. Strong Karush–Kuhn–Tucker optimality conditions for multiobjective semi-infinite programming via tangential subdifferential. RAIRO - Operations Research - Recherche Opérationnelle, Tome 52 (2018) no. 4-5, pp. 1019-1041. doi: 10.1051/ro/2018020
Cité par Sources :