Voir la notice de l'article provenant de la source Numdam
The object of this research in the queueing theory is a theorem about the Strong-Law-of-Large-Numbers (SLLN) under the conditions of heavy traffic in a multiserver open queueing network. SLLN is known as a fluid limit or fluid approximation. In this work, we prove that the long-term average rate of growth of the queue length process of a multiserver open queueing network under heavy traffic strongly converges to a particular vector of rates. SLLN is proved for the values of an important probabilistic characteristic of the multiserver open queueing network investigated as well as the queue length of jobs.
@article{RO_2014__48_3_349_0, author = {Minkevi\v{c}ius, Saulius}, title = {Fluid limits for the queue length of jobs in multiserver open queueing networks}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {349--363}, publisher = {EDP-Sciences}, volume = {48}, number = {3}, year = {2014}, doi = {10.1051/ro/2014011}, mrnumber = {3264382}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2014011/} }
TY - JOUR AU - Minkevičius, Saulius TI - Fluid limits for the queue length of jobs in multiserver open queueing networks JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2014 SP - 349 EP - 363 VL - 48 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2014011/ DO - 10.1051/ro/2014011 LA - en ID - RO_2014__48_3_349_0 ER -
%0 Journal Article %A Minkevičius, Saulius %T Fluid limits for the queue length of jobs in multiserver open queueing networks %J RAIRO - Operations Research - Recherche Opérationnelle %D 2014 %P 349-363 %V 48 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2014011/ %R 10.1051/ro/2014011 %G en %F RO_2014__48_3_349_0
Minkevičius, Saulius. Fluid limits for the queue length of jobs in multiserver open queueing networks. RAIRO - Operations Research - Recherche Opérationnelle, Tome 48 (2014) no. 3, pp. 349-363. doi : 10.1051/ro/2014011. http://geodesic.mathdoc.fr/articles/10.1051/ro/2014011/
[1] Convergence of Probability Measures. Wiley, New York (1968). | Zbl | MR
,[2] Weak convergence of functionals of random sequences and processes defined on the whole axis. Proc. Stecklov Math. Inst. 128 (1972) 41-65. | Zbl | MR
,[3] Stochastic Processes in Queueing Theory. Springer, Berlin (1976). | Zbl | MR
,[4] Asymptotic Methods in Queueing Theory. Wiley, New York (1984). | Zbl | MR
,[5] Limit theorems for queueing networks. Theory Prob. Appl. 31 (1986) 413-427. | Zbl | MR
,[6] Stochastic discrete flow networks: Diffusion approximations and bottlenecks. The Annals of Probability 19 (1991) 1463-1519. | Zbl | MR
and ,[7] Diffusion approximations for computer communications networks. in Computer Communications, Proc. Syrup. Appl. Math., edited by B. Gopinath. American Mathematical Society (1985) 83-124. | Zbl | MR
,[8] Diffusion approximations. in Handbooks in Operations Research and Management Science, edited by D.P. Heyman and M.J. Sobel, Vol. 2 of Stochastic Models. North-Holland (1990). | Zbl | MR
,[9] A new view of the heavy-traffic limit theorems for infinite-server queues. Adv. Appl. Probab. 23 (1991) 188-209. | Zbl | MR
and ,[10] Diffusion approximation in queueing theory. Fundamentals of Teletraffic Theory. Proc. Third Int. Seminar on Teletraffic Theory (1984) 147-158.
and ,[11] The heavy traffic approximation for single server queues in series. Adv. Appl. Probab. 10 (1973) 613-629. | Zbl | MR
,[12] The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab. 10 (1978) 886-905. | Zbl | MR
,[13] A note on networks of infinite-server queues. J. Appl. Probab. 18 (1981) 561-567. | Zbl | MR
and ,[14] On the distribution of multidimensional reflected Brownian motion. SIAM J. Appl. Math. 41 (1981) 345-361. | Zbl | MR
and ,[15] Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22 (1987) 77-115. | Zbl | MR
and ,[16] Multiple channel queues in heavy traffic. IV. Law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 17 (1971) 168-180. | Zbl | MR
,[17] Multiple channel queues in heavy traffic I. Adv. Appl. Probab. 2 (1970) 150-175. | Zbl | MR
and ,[18] Multiple channel queues in heavy traffic II: Sequences, networks and batches. Adv. Appl. Probab. 2 (1970) 355-364. | Zbl | MR
and ,[19] Diffusion Approximations for Optimal Filtering of Jump Processes and for Queueing Networks. Ph.D. dissertation, University of Wisconsin (1983). | MR
,[20] Joint distributions in Poissonian tandem queues. Queueing Systems 12 (1992) 274-286. | Zbl | MR
and ,[21] An asymptotic analysis of blocking. Modelling and Performance Evaluation Methodology. Springer, Berlin (1984) 3-20. | Zbl | MR
,[22] Several solved and unsolved problems of the service by queues in series (in Russian). Izv. AN USSR, Ser. Tech. Kibern. 6 (1970) 88-92.
,[23] The diffusion approximation for queues with input flow, depending on a queue state and general service. Theory Prob. Appl. 33 (1988) 124-135. | Zbl
, and ,[24] Tandem queues with finite intermediate waiting room and blocking in heavy traffic. Prob. Control Int. Theory 17 (1988) 3-13. | Zbl | MR
and ,[25] Network of queues - A survey of weak convergence results. Management Science 24 (1978) 1175-1193. | Zbl | MR
,[26] Theory of Martingales. Kluwer, Boston (1989).
and ,[27] On the global values of the queue length in open queueing networks, Int. J. Comput. Math. (2009) 1029-0265. | Zbl
,[28] On the law of the iterated logarithm in multiserver open queueing networks, Stochastics, 2013 (accepted).
,[29] Application of the law of the iterated logarithm in open queueing networks. WSEAS Transactions on Systems 6 (2007) 643-651. | Zbl
and ,[30] Convergence of random processes and limit theorems in probability theory. Theory Prob. Appl. 1 (1956) 157-214. | Zbl | MR
,[31] Open queueing networks in heavy traffic. Math. Oper. Res. 9 (1984) 441-458. | Zbl | MR
,[32] A multiclass feedback queue in heavy traffic. Adv. Appl. Probab. 20 (1988) 179-207. | Zbl | MR
,[33] A network of priority queues in heavy traffic: one bottleneck station. Queueing Systems 6 (1990) 33-58. | Zbl | MR
and ,[34] On the law of the iterated logarithm in open queueing networks. Eur. J. Oper. Res. 120 (2000) 632-640. | Zbl | MR
and ,[35] Studies in the Theory of Random Processes. Addison-Wesley, New York (1965). | Zbl | MR
,[36] An invariance principle for the law of the iterated logarithm. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 3 (1964) 211-226. | Zbl | MR
,[37] Asymptotic stationarity of queues in series and the heavy traffic approximation. The Annals of Probability 18 (1990) 1232-1248. | Zbl | MR
and ,[38] Weak convergence theorems for priority queues: preemptive resume discipline. J. Appl. Probab. 8 (1971) 79-94. | Zbl | MR
,[39] Heavy traffic limit theorems for queues: a survey. in Lecture Notes in Economics and Mathematical Systems, Vol. 98. Springer-Verlag, Berlin, Heidelberg, New York (1971) 307-350. | Zbl | MR
,[40] On the heavy-traffic limit theorem for GI/G/∞ queues. Adv. Appl. Probab. 14 (1982) 171-190. | Zbl | MR
,Cité par Sources :