Analysis of a M X /G(a,b)/1 queueing system with vacation interruption
RAIRO - Operations Research - Recherche Opérationnelle, Tome 46 (2012) no. 4, pp. 305-334

Voir la notice de l'article provenant de la source Numdam

In this paper, a batch arrival general bulk service queueing system with interrupted vacation (secondary job) is considered. At a service completion epoch, if the server finds at least ‘a' customers waiting for service say ξ, he serves a batch of min (ξ, b) customers, where b ≥ a. On the other hand, if the queue length is at the most ‘a-1', the server leaves for a secondary job (vacation) of random length. It is assumed that the secondary job is interrupted abruptly and the server resumes for primary service, if the queue size reaches ‘a', during the secondary job period. On completion of the secondary job, the server remains in the system (dormant period) until the queue length reaches ‘a'. For the proposed model, the probability generating function of the steady state queue size distribution at an arbitrary time is obtained. Various performance measures are derived. A cost model for the queueing system is also developed. To optimize the cost, a numerical illustration is provided.

DOI : 10.1051/ro/2012018
Classification : 60K25, 60K20, 90B22, 68M20
Keywords: bulk arrival, single server, batch service, vacation, interruption
@article{RO_2012__46_4_305_0,
     author = {Haridass, M. and Arumuganathan, R.},
     title = {Analysis of a {M}$^X$/$\mathrm {G}(a,b)$/$1$ queueing system with vacation interruption},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {305--334},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {4},
     year = {2012},
     doi = {10.1051/ro/2012018},
     zbl = {1268.60113},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2012018/}
}
TY  - JOUR
AU  - Haridass, M.
AU  - Arumuganathan, R.
TI  - Analysis of a M$^X$/$\mathrm {G}(a,b)$/$1$ queueing system with vacation interruption
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2012
SP  - 305
EP  - 334
VL  - 46
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro/2012018/
DO  - 10.1051/ro/2012018
LA  - en
ID  - RO_2012__46_4_305_0
ER  - 
%0 Journal Article
%A Haridass, M.
%A Arumuganathan, R.
%T Analysis of a M$^X$/$\mathrm {G}(a,b)$/$1$ queueing system with vacation interruption
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2012
%P 305-334
%V 46
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro/2012018/
%R 10.1051/ro/2012018
%G en
%F RO_2012__46_4_305_0
Haridass, M.; Arumuganathan, R. Analysis of a M$^X$/$\mathrm {G}(a,b)$/$1$ queueing system with vacation interruption. RAIRO - Operations Research - Recherche Opérationnelle, Tome 46 (2012) no. 4, pp. 305-334. doi: 10.1051/ro/2012018

Cité par Sources :