Decrease of C 1,1 property in vector optimization
RAIRO - Operations Research - Recherche Opérationnelle, Tome 43 (2009) no. 4, pp. 359-372.

Voir la notice de l'article provenant de la source Numdam

In the paper we generalize sufficient and necessary optimality conditions obtained by Ginchev, Guerraggio, Rocca, and by authors with the help of the notion of -stability for vector functions.

DOI : 10.1051/ro/2009023
Classification : 49K10, 49J52, 49J50, 90C29, 90C30
Keywords: $C^{1,1}$ function, ${\ell }$-stable function, generalized second-order directional derivative, Dini derivative, weakly efficient minimizer, isolated minimizer of second-order
@article{RO_2009__43_4_359_0,
     author = {Bedna\v{r}{\'\i}k, Du\v{s}an and Pastor, Karel},
     title = {Decrease of $C^{1,1}$ property in vector optimization},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {359--372},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {4},
     year = {2009},
     doi = {10.1051/ro/2009023},
     mrnumber = {2573992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2009023/}
}
TY  - JOUR
AU  - Bednařík, Dušan
AU  - Pastor, Karel
TI  - Decrease of $C^{1,1}$ property in vector optimization
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2009
SP  - 359
EP  - 372
VL  - 43
IS  - 4
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro/2009023/
DO  - 10.1051/ro/2009023
LA  - en
ID  - RO_2009__43_4_359_0
ER  - 
%0 Journal Article
%A Bednařík, Dušan
%A Pastor, Karel
%T Decrease of $C^{1,1}$ property in vector optimization
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2009
%P 359-372
%V 43
%N 4
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro/2009023/
%R 10.1051/ro/2009023
%G en
%F RO_2009__43_4_359_0
Bednařík, Dušan; Pastor, Karel. Decrease of $C^{1,1}$ property in vector optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 43 (2009) no. 4, pp. 359-372. doi : 10.1051/ro/2009023. http://geodesic.mathdoc.fr/articles/10.1051/ro/2009023/

[1] J.P. Aubin and A. Cellina, Differential inclusions, Springer Verlag, Berlin (1984). | Zbl | MR

[2] D. Bednařík and K. Pastor, On characterization of convexity for regularly locally Lipschitz functions. Nonlinear Anal. 57 (2004) 85-97. | Zbl | MR

[3] D. Bednařík and K. Pastor, Elimination of strict convergence in optimization. SIAM J. Control Optim. 43 (2004) 1063-1077. | Zbl | MR

[4] D. Bednařík and K. Pastor, Using the Peano derivative in unconstrained optimization. Math. Program. 113 (2008) 283-298. | Zbl

[5] D. Bednařík and K. Pastor, Differentiability properties of functions that are -stable at a point. Nonlinear Anal. 69 (2008) 3128-3135. | Zbl | MR

[6] D. Bednařík and K. Pastor, -stable functions are continuous. Nonlinear Anal. 70 (2009) 2317-2324. | Zbl | MR

[7] A. Ben-Tal and J. Zowe, Directional derivatives in nonsmooth optimization. J. Optim. Theory Appl. 47 (1985) 483-490. | Zbl | MR

[8] W.L. Chan, L.R. Huang and K.F. Ng, On generalized second-order derivatives and Taylor expansions in nonsmooth optimization. SIAM J. Control Optim. 32 (1994) 591-611. | Zbl | MR

[9] R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28 (1990) 789-809. | Zbl | MR

[10] P.G. Georgiev and N.P. Zlateva, Second-order Subdifferentials of C 1,1 Functions and Optimality Conditions. Set-Valued Anal. 4 (1996) 101-117. | Zbl | MR

[11] I. Ginchev, Higher order optimality conditions in nonsmooth optimization. Optimization 51 (2002) 47-72. | Zbl | MR

[12] I. Ginchev, A. Guerraggio and M. Rocca, Second order conditions for C 1,1 constrained vector optimization. Math. Program. Ser. B 104 (2005) 389-405. | Zbl | MR

[13] I. Ginchev, A. Guerraggio and M. Rocca, From scalar to vector optimization. Applications of Mathematics 51 (2006) 5-36. | Zbl | MR

[14] A. Guerraggio and D.T. Luc, Optimality conditions for C 1,1 vector optimization problems. J. Optim. Theory Appl. 109 (2001) 615-629. | Zbl | MR

[15] J.J. Hiriart-Urruty, J.J. Strodiot and V.H. Nguyen, Generalized Hessian matrix and second order optimality conditions for problems with C 1,1 data. Appl. Math. Optim. 11 (1984) 169-180. | Zbl | MR

[16] L.R. Huang and K.F. Ng, On lower bounds of the second-order directional derivatives of Ben-Tal-Zowe and Chaney. Math. Oper. Res. 22 (1997) 747-753. | Zbl | MR

[17] J. Jahn, Vector optimization, Springer Verlag, New York (2004). | Zbl | MR

[18] B. Jiménez and V. Novo, First and second order sufficient conditions for strict minimality in nonsmooth vector optimization. J. Math. Anal. Appl. 284 (2003) 496-510. | Zbl | MR

[19] B. Jiménez and V. Novo, First order optimality conditions in vector optimization involving stable functions. Optimization 57 (2008) 449-471. | MR

[20] P.Q. Khanh and N.D. Tuan, Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives. J. Optim. Theory Appl. 133 (2007) 341-357. | Zbl | MR

[21] D. Klatte, Upper Lipschitz behavior of solutions to perturbed C 1,1 programs. Math. Program. (Ser B) 88 (2000) 285-311. | Zbl | MR

[22] L. Liu, The second-order conditions of nondominated solutions for C 1,1 generalized multiobjective mathematical programming. J. Systems Sci. Math. Sci. 4 (1991) 128-138. | Zbl | MR

[23] L. Liu and M. Křížek, The second-order optimality conditions for nonlinear mathematical programming with C 1,1 data. Appl. Math. 42 (1997) 311-320. | Zbl | MR

[24] L. Liu, P. Neittaanmäki and M. Křížek, Second-order optimality conditions for nondominated solutions of multiobjective programming with C 1,1 data. Appl. Math. 45 (2000) 381-397. | Zbl | MR

[25] Y. Maruyama, Second-order necessary conditions for nonlinear optimization problems in Banach spaces and their application to an optimal control problem. Math. Oper. Res. 15 (1990) 467-482. | Zbl | MR

[26] K. Pastor, Convexity and generalized second-order derivatives for locally Lipschitz functions. Nonlinear Anal. 60 (2005) 547-555. | Zbl | MR

[27] K. Pastor, Fréchet approach to generalized second-order differentiability. to appear in Studia Scientiarum Mathematicarum Hungarica 45 (2008) 333-352.

[28] R.T. Rockafellar, Convex analysis, Princeton University Press, Princeton (1970). | Zbl | MR

[29] R.T. Rockafellar, R.J.-B. Wets, Variational Analysis, Springer Verlag, New York (1998). | Zbl | MR

Cité par Sources :