Voir la notice de l'article provenant de la source Numdam
In the paper we generalize sufficient and necessary optimality conditions obtained by Ginchev, Guerraggio, Rocca, and by authors with the help of the notion of -stability for vector functions.
@article{RO_2009__43_4_359_0, author = {Bedna\v{r}{\'\i}k, Du\v{s}an and Pastor, Karel}, title = {Decrease of $C^{1,1}$ property in vector optimization}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {359--372}, publisher = {EDP-Sciences}, volume = {43}, number = {4}, year = {2009}, doi = {10.1051/ro/2009023}, mrnumber = {2573992}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2009023/} }
TY - JOUR AU - Bednařík, Dušan AU - Pastor, Karel TI - Decrease of $C^{1,1}$ property in vector optimization JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2009 SP - 359 EP - 372 VL - 43 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2009023/ DO - 10.1051/ro/2009023 LA - en ID - RO_2009__43_4_359_0 ER -
%0 Journal Article %A Bednařík, Dušan %A Pastor, Karel %T Decrease of $C^{1,1}$ property in vector optimization %J RAIRO - Operations Research - Recherche Opérationnelle %D 2009 %P 359-372 %V 43 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2009023/ %R 10.1051/ro/2009023 %G en %F RO_2009__43_4_359_0
Bednařík, Dušan; Pastor, Karel. Decrease of $C^{1,1}$ property in vector optimization. RAIRO - Operations Research - Recherche Opérationnelle, Tome 43 (2009) no. 4, pp. 359-372. doi : 10.1051/ro/2009023. http://geodesic.mathdoc.fr/articles/10.1051/ro/2009023/
[1] Differential inclusions, Springer Verlag, Berlin (1984). | Zbl | MR
and ,[2] On characterization of convexity for regularly locally Lipschitz functions. Nonlinear Anal. 57 (2004) 85-97. | Zbl | MR
and ,[3] Elimination of strict convergence in optimization. SIAM J. Control Optim. 43 (2004) 1063-1077. | Zbl | MR
and ,[4] Using the Peano derivative in unconstrained optimization. Math. Program. 113 (2008) 283-298. | Zbl
and ,[5] Differentiability properties of functions that are -stable at a point. Nonlinear Anal. 69 (2008) 3128-3135. | Zbl | MR
and ,[6] -stable functions are continuous. Nonlinear Anal. 70 (2009) 2317-2324. | Zbl | MR
and ,[7] Directional derivatives in nonsmooth optimization. J. Optim. Theory Appl. 47 (1985) 483-490. | Zbl | MR
and ,[8] On generalized second-order derivatives and Taylor expansions in nonsmooth optimization. SIAM J. Control Optim. 32 (1994) 591-611. | Zbl | MR
, and ,[9] A generalized second-order derivative in nonsmooth optimization. SIAM J. Control Optim. 28 (1990) 789-809. | Zbl | MR
and ,[10] Second-order Subdifferentials of Functions and Optimality Conditions. Set-Valued Anal. 4 (1996) 101-117. | Zbl | MR
and ,[11] Higher order optimality conditions in nonsmooth optimization. Optimization 51 (2002) 47-72. | Zbl | MR
,[12] Second order conditions for constrained vector optimization. Math. Program. Ser. B 104 (2005) 389-405. | Zbl | MR
, and ,[13] From scalar to vector optimization. Applications of Mathematics 51 (2006) 5-36. | Zbl | MR
, and ,[14] Optimality conditions for vector optimization problems. J. Optim. Theory Appl. 109 (2001) 615-629. | Zbl | MR
and ,[15] Generalized Hessian matrix and second order optimality conditions for problems with data. Appl. Math. Optim. 11 (1984) 169-180. | Zbl | MR
, and ,[16] On lower bounds of the second-order directional derivatives of Ben-Tal-Zowe and Chaney. Math. Oper. Res. 22 (1997) 747-753. | Zbl | MR
and ,[17] Vector optimization, Springer Verlag, New York (2004). | Zbl | MR
,[18] First and second order sufficient conditions for strict minimality in nonsmooth vector optimization. J. Math. Anal. Appl. 284 (2003) 496-510. | Zbl | MR
and ,[19] First order optimality conditions in vector optimization involving stable functions. Optimization 57 (2008) 449-471. | MR
and ,[20] Optimality conditions for nonsmooth multiobjective optimization using Hadamard directional derivatives. J. Optim. Theory Appl. 133 (2007) 341-357. | Zbl | MR
and ,[21] Upper Lipschitz behavior of solutions to perturbed programs. Math. Program. (Ser B) 88 (2000) 285-311. | Zbl | MR
,[22] The second-order conditions of nondominated solutions for generalized multiobjective mathematical programming. J. Systems Sci. Math. Sci. 4 (1991) 128-138. | Zbl | MR
,[23] The second-order optimality conditions for nonlinear mathematical programming with data. Appl. Math. 42 (1997) 311-320. | Zbl | MR
and ,[24] Second-order optimality conditions for nondominated solutions of multiobjective programming with data. Appl. Math. 45 (2000) 381-397. | Zbl | MR
, and ,[25] Second-order necessary conditions for nonlinear optimization problems in Banach spaces and their application to an optimal control problem. Math. Oper. Res. 15 (1990) 467-482. | Zbl | MR
,[26] Convexity and generalized second-order derivatives for locally Lipschitz functions. Nonlinear Anal. 60 (2005) 547-555. | Zbl | MR
,[27] Fréchet approach to generalized second-order differentiability. to appear in Studia Scientiarum Mathematicarum Hungarica 45 (2008) 333-352.
,[28] Convex analysis, Princeton University Press, Princeton (1970). | Zbl | MR
,[29] Variational Analysis, Springer Verlag, New York (1998). | Zbl | MR
, ,Cité par Sources :