Locally bounded k-colorings of trees
RAIRO - Operations Research - Recherche Opérationnelle, Tome 43 (2009) no. 1, pp. 27-33 Cet article a éte moissonné depuis la source Numdam

Voir la notice de l'article

Given a tree T with n vertices, we show, by using a dynamic programming approach, that the problem of finding a 3-coloring of T respecting local (i.e., associated with p prespecified subsets of vertices) color bounds can be solved in O(n 6p-1 logn) time. We also show that our algorithm can be adapted to the case of k-colorings for fixed k.

DOI : 10.1051/ro/2009003
Classification : 05C15, 90C39
Keywords: bounded graph coloring, tree, dynamic programming
@article{RO_2009__43_1_27_0,
     author = {Bentz, C. and Picouleau, C.},
     title = {Locally bounded $k$-colorings of trees},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {27--33},
     year = {2009},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {1},
     doi = {10.1051/ro/2009003},
     mrnumber = {2502323},
     zbl = {1158.05317},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2009003/}
}
TY  - JOUR
AU  - Bentz, C.
AU  - Picouleau, C.
TI  - Locally bounded $k$-colorings of trees
JO  - RAIRO - Operations Research - Recherche Opérationnelle
PY  - 2009
SP  - 27
EP  - 33
VL  - 43
IS  - 1
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ro/2009003/
DO  - 10.1051/ro/2009003
LA  - en
ID  - RO_2009__43_1_27_0
ER  - 
%0 Journal Article
%A Bentz, C.
%A Picouleau, C.
%T Locally bounded $k$-colorings of trees
%J RAIRO - Operations Research - Recherche Opérationnelle
%D 2009
%P 27-33
%V 43
%N 1
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ro/2009003/
%R 10.1051/ro/2009003
%G en
%F RO_2009__43_1_27_0
Bentz, C.; Picouleau, C. Locally bounded $k$-colorings of trees. RAIRO - Operations Research - Recherche Opérationnelle, Tome 43 (2009) no. 1, pp. 27-33. doi: 10.1051/ro/2009003

Cité par Sources :