Voir la notice de l'article provenant de la source Numdam
Given a tree with vertices, we show, by using a dynamic programming approach, that the problem of finding a 3-coloring of respecting local (i.e., associated with prespecified subsets of vertices) color bounds can be solved in time. We also show that our algorithm can be adapted to the case of -colorings for fixed .
@article{RO_2009__43_1_27_0, author = {Bentz, C. and Picouleau, C.}, title = {Locally bounded $k$-colorings of trees}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {27--33}, publisher = {EDP-Sciences}, volume = {43}, number = {1}, year = {2009}, doi = {10.1051/ro/2009003}, mrnumber = {2502323}, zbl = {1158.05317}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ro/2009003/} }
TY - JOUR AU - Bentz, C. AU - Picouleau, C. TI - Locally bounded $k$-colorings of trees JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2009 SP - 27 EP - 33 VL - 43 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ro/2009003/ DO - 10.1051/ro/2009003 LA - en ID - RO_2009__43_1_27_0 ER -
%0 Journal Article %A Bentz, C. %A Picouleau, C. %T Locally bounded $k$-colorings of trees %J RAIRO - Operations Research - Recherche Opérationnelle %D 2009 %P 27-33 %V 43 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ro/2009003/ %R 10.1051/ro/2009003 %G en %F RO_2009__43_1_27_0
Bentz, C.; Picouleau, C. Locally bounded $k$-colorings of trees. RAIRO - Operations Research - Recherche Opérationnelle, Tome 43 (2009) no. 1, pp. 27-33. doi : 10.1051/ro/2009003. http://geodesic.mathdoc.fr/articles/10.1051/ro/2009003/
[1] Mutual exclusion scheduling. Theor. Comput. Sci. 162 (1996) 225-243. | Zbl | MR
and ,[2] Graphes. Gauthier-Villars, Paris (1983). | Zbl | MR
,[3] Equitable colorings of bounded treewidth graphs. Theor. Comput. Sci. 349 (2005) 22-30. | Zbl | MR
and ,[4] Restrictions of graph partition problems. Part I. Theor. Comput. Sci. 148 (1995) 93-109. | Zbl | MR
and ,[5] Equitable and proportional coloring of trees. J. Comb. Theory, Ser. B 34 (1983) 177-186. | Zbl | MR
and ,[6] A note on the -bounded chromatic number of a tree. Eur. J. Comb. 14 (1993) 311-312. | Zbl | MR
and ,[7] Equitable Coloring of Trees. J. Comb. Theory, Ser. B 61 (1994) 83-87. | Zbl | MR
and ,[8] Introduction to Algorithms. The MIT press, (2001). | Zbl | MR
, , and ,[9] Feasible edge colorings of trees with cardinality constraints. Discrete Math. 222 (2000) 61-72. | Zbl | MR
, , and ,[10] Computers and Intractability, a Guide to the Theory of NP-Completeness. Ed. Freeman New York (1979). | Zbl | MR
and ,[11] Complexity of list coloring problems with a fixed total number of colors. Discrete Appl. Math. 117 (2002) 65-79. | Zbl | MR
, and ,[12] Proof of a conjecture of P. Erdős. Combinatorial Theory and its Applications, Vol. II, North-Holland, Amsterdam (1970) 601-623. | Zbl | MR
and ,[13] Bounded vertex colorings of graphs. Discrete Math. 111 (1993) 305-312. | Zbl | MR
, and ,[14] Bounded vertex coloring of trees. Discrete Math. 232 (2001) 145-151. | Zbl | MR
and ,Cité par Sources :