Branching random walks on binary search trees : convergence of the occupation measure
ESAIM: Probability and Statistics, Tome 14 (2010), pp. 286-298.

Voir la notice de l'article provenant de la source Numdam

We consider branching random walks with binary search trees as underlying trees. We show that the occupation measure of the branching random walk, up to some scaling factors, converges weakly to a deterministic measure. The limit depends on the stable law whose domain of attraction contains the law of the increments. The existence of such stable law is our fundamental hypothesis. As a consequence, using a one-to-one correspondence between binary trees and plane trees, we give a description of the asymptotics of the profile of recursive trees. The main result is also applied to the study of the size of the fragments of some homogeneous fragmentations.

DOI : 10.1051/ps:2008035
Classification : 60F05, 60G50, 68W40, 60J80, 05C05
Keywords: random binary search tree, branching random walk, occupation measure, fragmentation, recursive tree
@article{PS_2010__14__286_0,
     author = {Fekete, Eric},
     title = {Branching random walks on binary search trees : convergence of the occupation measure},
     journal = {ESAIM: Probability and Statistics},
     pages = {286--298},
     publisher = {EDP-Sciences},
     volume = {14},
     year = {2010},
     doi = {10.1051/ps:2008035},
     mrnumber = {2779485},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2008035/}
}
TY  - JOUR
AU  - Fekete, Eric
TI  - Branching random walks on binary search trees : convergence of the occupation measure
JO  - ESAIM: Probability and Statistics
PY  - 2010
SP  - 286
EP  - 298
VL  - 14
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2008035/
DO  - 10.1051/ps:2008035
LA  - en
ID  - PS_2010__14__286_0
ER  - 
%0 Journal Article
%A Fekete, Eric
%T Branching random walks on binary search trees : convergence of the occupation measure
%J ESAIM: Probability and Statistics
%D 2010
%P 286-298
%V 14
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2008035/
%R 10.1051/ps:2008035
%G en
%F PS_2010__14__286_0
Fekete, Eric. Branching random walks on binary search trees : convergence of the occupation measure. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 286-298. doi : 10.1051/ps:2008035. http://geodesic.mathdoc.fr/articles/10.1051/ps:2008035/

[1] D. Aldous, Tree-based models for random distribution mass. J. Statist. Phys. 73 (1993) 625-641. | Zbl

[2] J. Bertoin, The asymptotic behavior of fragmentation processes. J. Eur. Math. Soc. 5 (2003) 395-416. | Zbl | EuDML

[3] J.D. Biggins, Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25-37. | Zbl

[4] P. Billingsley, Probability and measure. Second edition. John Wiley & Sons, New York (1986). | Zbl

[5] L. Breiman, Probability. Second edition. SIAM (1992).

[6] G.G. Brown and B.O. Shubert, On random binary trees. Math. Oper. Res. 9 (1985) 43-65. | Zbl

[7] P. Chassaing and G. Schaeffer, Random planar lattices and integrated superbrownian excursion. Probab. Theory Relat. Fields 128 (2004) 161-212. | Zbl

[8] B. Chauvin, T. Klein, J.F. Marckert and A. Rouault, Martingales and profile of binary search trees. Electron. J. Probab. 10 (2005) 420-435. | Zbl | EuDML

[9] L. Devroye and H.K. Hwang, Width and more of the profile for random trees of logarithmic height. Ann. Appl. Probab. 16 (2006) 886-918. | Zbl

[10] M. Drmota, Profile and height of random binary search trees. J. Iranian Stat. Soc. 3 (2004) 117-138.

[11] M. Fuchs, H.-K. Hwang and R. Neininger, Profiles of random trees: limit theorems for random recursive trees and binary search trees. Available at: http://algo.stat.sinica.edu.tw (2005). | Zbl

[12] S. Janson and J.F. Marckert, Convergence of discrete snakes. J. Theory Probab. 18 (2005) 615-645. | Zbl

[13] O. Kallenberg, Fundations of Modern Probability. Second edition. Springer-Verlag, New York (2001). | Zbl

[14] D.E. Knuth, The art of computer programing, Volume 1: Fundamental algorithms. Second edition. Addison-Wesley, Reading, MA (1997). | Zbl

[15] M. Kuba and A. Panholzer, The left-right-imbalance of binary search trees. Available at: http://info.tuwien.ac.at/panholzer (2006). | Zbl

[16] G. Louchard, Exact and asymptotic distributions in digital and binary search trees. RAIRO Theoret. Inform. Appl. 21 (1987) 479-496. | Zbl | mathdoc-id

[17] H. Mahmoud, Evolution of Random Search Trees. John Wiley, New York (1992). | Zbl

[18] H.M. Mahmoud and R. Neininger, Distribution of distances in random binary search trees. Ann. Appl. Prob. 13 (2003) 253-276. | Zbl

[19] H.M. Mahmoud and R.T. Smythe, A survey of recursive trees. Theoret. Probab. Math. Statist. 51 (1995) 1-27. | Zbl

[20] J.-F. Marckert, The rotation correspondence is asymptotically a dilatation. Random Struct. Algorithms 24 (2004) 118-132. | Zbl

[21] G. Slade and T. Hara, The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-brownian excursion. J. Math. Phys. 41 (2000) 1244-1293. | Zbl

Cité par Sources :