Behavior of the Euler scheme with decreasing step in a degenerate situation
ESAIM: Probability and Statistics, Tome 11 (2007), pp. 236-247.

Voir la notice de l'article provenant de la source Numdam

The aim of this short note is to study the behavior of the weighted empirical measures of the decreasing step Euler scheme of a one-dimensional diffusion process having multiple invariant measures. This situation can occur when the drift and the diffusion coefficient are vanish simultaneously.

DOI : 10.1051/ps:2007018
Classification : 60H10, 65C30, 37M25
Keywords: one-dimensional diffusion process, degenerate coefficient, invariant measure, Euler scheme
@article{PS_2007__11__236_0,
     author = {Lemaire, Vincent},
     title = {Behavior of the {Euler} scheme with decreasing step in a degenerate situation},
     journal = {ESAIM: Probability and Statistics},
     pages = {236--247},
     publisher = {EDP-Sciences},
     volume = {11},
     year = {2007},
     doi = {10.1051/ps:2007018},
     mrnumber = {2320818},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007018/}
}
TY  - JOUR
AU  - Lemaire, Vincent
TI  - Behavior of the Euler scheme with decreasing step in a degenerate situation
JO  - ESAIM: Probability and Statistics
PY  - 2007
SP  - 236
EP  - 247
VL  - 11
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007018/
DO  - 10.1051/ps:2007018
LA  - en
ID  - PS_2007__11__236_0
ER  - 
%0 Journal Article
%A Lemaire, Vincent
%T Behavior of the Euler scheme with decreasing step in a degenerate situation
%J ESAIM: Probability and Statistics
%D 2007
%P 236-247
%V 11
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2007018/
%R 10.1051/ps:2007018
%G en
%F PS_2007__11__236_0
Lemaire, Vincent. Behavior of the Euler scheme with decreasing step in a degenerate situation. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 236-247. doi : 10.1051/ps:2007018. http://geodesic.mathdoc.fr/articles/10.1051/ps:2007018/

[1] W. Feller, The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math. (2) 55 (1952) 468-519. | Zbl

[2] W. Feller, Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. | Zbl

[3] I. Karatzas and S.E. Shreve, Brownian motion and stochastic calculus. Springer-Verlag, New York, 2nd edition, Graduate Texts in Mathematics 113 (1991). | Zbl | MR

[4] S. Karlin and H.M. Taylor, A second course in stochastic processes. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1981). | Zbl | MR

[5] D. Lamberton and G. Pagès, Recursive computation of the invariant distribution of a diffusion. Bernoulli 8 (2002) 367-405. | Zbl

[6] V. Lemaire, Estimation récursive de la mesure invariante d'un processus de diffusion. Ph.D. Thesis, Université de Marne-la-Vallée (2005).

[7] G. Pagès, Sur quelques algorithmes récursifs pour les probabilités numériques. ESAIM Probab. Statist. 5 (2001) 141-170 (electronic). | Zbl | mathdoc-id

[8] L.C.G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 1. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Ltd., Chichester, 2nd edition (1994). | Zbl | MR

[9] W.F. Stout, Almost sure convergence. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, Probability and Mathematical Statistics 24 (1974). | Zbl | MR

Cité par Sources :