Voir la notice de l'article provenant de la source Numdam
The aim of this short note is to study the behavior of the weighted empirical measures of the decreasing step Euler scheme of a one-dimensional diffusion process having multiple invariant measures. This situation can occur when the drift and the diffusion coefficient are vanish simultaneously.
@article{PS_2007__11__236_0, author = {Lemaire, Vincent}, title = {Behavior of the {Euler} scheme with decreasing step in a degenerate situation}, journal = {ESAIM: Probability and Statistics}, pages = {236--247}, publisher = {EDP-Sciences}, volume = {11}, year = {2007}, doi = {10.1051/ps:2007018}, mrnumber = {2320818}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2007018/} }
TY - JOUR AU - Lemaire, Vincent TI - Behavior of the Euler scheme with decreasing step in a degenerate situation JO - ESAIM: Probability and Statistics PY - 2007 SP - 236 EP - 247 VL - 11 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2007018/ DO - 10.1051/ps:2007018 LA - en ID - PS_2007__11__236_0 ER -
%0 Journal Article %A Lemaire, Vincent %T Behavior of the Euler scheme with decreasing step in a degenerate situation %J ESAIM: Probability and Statistics %D 2007 %P 236-247 %V 11 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps:2007018/ %R 10.1051/ps:2007018 %G en %F PS_2007__11__236_0
Lemaire, Vincent. Behavior of the Euler scheme with decreasing step in a degenerate situation. ESAIM: Probability and Statistics, Tome 11 (2007), pp. 236-247. doi : 10.1051/ps:2007018. http://geodesic.mathdoc.fr/articles/10.1051/ps:2007018/
[1] The parabolic differential equations and the associated semi-groups of transformations. Ann. of Math. (2) 55 (1952) 468-519. | Zbl
,[2] Diffusion processes in one dimension. Trans. Amer. Math. Soc. 77 (1954) 1-31. | Zbl
,[3] Brownian motion and stochastic calculus. Springer-Verlag, New York, 2nd edition, Graduate Texts in Mathematics 113 (1991). | Zbl | MR
and ,[4] A second course in stochastic processes. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York (1981). | Zbl | MR
and ,[5] Recursive computation of the invariant distribution of a diffusion. Bernoulli 8 (2002) 367-405. | Zbl
and ,[6] Estimation récursive de la mesure invariante d'un processus de diffusion. Ph.D. Thesis, Université de Marne-la-Vallée (2005).
,[7] Sur quelques algorithmes récursifs pour les probabilités numériques. ESAIM Probab. Statist. 5 (2001) 141-170 (electronic). | Zbl | mathdoc-id
,[8] Diffusions, Markov processes, and martingales. Vol. 1. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Ltd., Chichester, 2nd edition (1994). | Zbl | MR
and ,[9] Almost sure convergence. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, Probability and Mathematical Statistics 24 (1974). | Zbl | MR
,Cité par Sources :