Voir la notice de l'article provenant de la source Numdam
A branching random motion on a line, with abrupt changes of direction, is studied. The branching mechanism, being independent of random motion, and intensities of reverses are defined by a particle's current direction. A solution of a certain hyperbolic system of coupled non-linear equations (Kolmogorov type backward equation) has a so-called McKean representation via such processes. Commonly this system possesses travelling-wave solutions. The convergence of solutions with Heaviside terminal data to the travelling waves is discussed. The paper realizes the McKean's program for the Kolmogorov-Petrovskii-Piskunov equation in this case. The Feynman-Kac formula plays a key role.
Keywords: branching random motion, travelling wave, Feynman-Kac connection, non-linear hyperbolic system, McKean solution
@article{PS_2006__10__236_0,
author = {Ratanov, Nikita},
title = {Branching random motions, nonlinear hyperbolic systems and travelling waves},
journal = {ESAIM: Probability and Statistics},
pages = {236--257},
publisher = {EDP-Sciences},
volume = {10},
year = {2006},
doi = {10.1051/ps:2006009},
mrnumber = {2219342},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2006009/}
}
TY - JOUR AU - Ratanov, Nikita TI - Branching random motions, nonlinear hyperbolic systems and travelling waves JO - ESAIM: Probability and Statistics PY - 2006 SP - 236 EP - 257 VL - 10 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2006009/ DO - 10.1051/ps:2006009 LA - en ID - PS_2006__10__236_0 ER -
%0 Journal Article %A Ratanov, Nikita %T Branching random motions, nonlinear hyperbolic systems and travelling waves %J ESAIM: Probability and Statistics %D 2006 %P 236-257 %V 10 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps:2006009/ %R 10.1051/ps:2006009 %G en %F PS_2006__10__236_0
Ratanov, Nikita. Branching random motions, nonlinear hyperbolic systems and travelling waves. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 236-257. doi: 10.1051/ps:2006009
Cité par Sources :
