Voir la notice de l'article provenant de la source Numdam
In the present paper, by using the inequality due to Talagrand's isoperimetric method, several versions of the bounded law of iterated logarithm for a sequence of independent Banach space valued random variables are developed and the upper limits for the non-random constant are given.
@article{PS_2005__9__19_0, author = {Deng, Dianliang}, title = {On the bounded laws of iterated logarithm in {Banach} space}, journal = {ESAIM: Probability and Statistics}, pages = {19--37}, publisher = {EDP-Sciences}, volume = {9}, year = {2005}, doi = {10.1051/ps:2005002}, mrnumber = {2148959}, zbl = {1136.60314}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2005002/} }
TY - JOUR AU - Deng, Dianliang TI - On the bounded laws of iterated logarithm in Banach space JO - ESAIM: Probability and Statistics PY - 2005 SP - 19 EP - 37 VL - 9 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2005002/ DO - 10.1051/ps:2005002 LA - en ID - PS_2005__9__19_0 ER -
Deng, Dianliang. On the bounded laws of iterated logarithm in Banach space. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 19-37. doi : 10.1051/ps:2005002. http://geodesic.mathdoc.fr/articles/10.1051/ps:2005002/
[1] Inequalities for -valued random variables with application to the law of large numbers. Ann. Probab. 9 (1981) 157-161. | Zbl
,[2] Inequalities for the th absolute moments of a sum of random variables, . Ann. math. Statist. 36 (1965) 299-303. | Zbl
and ,[3] On the law of iterated logarithm for independent Banach space valued random variables. Ann. Probab. 21 (1993) 1991-2011. | Zbl
,[4] The Kolmogorov’s LIL of -valued random elements and empirical processes. Acta Mathematica Sinica 36 (1993) 600-619. | Zbl
,[5] Probability Theory: Independence, Interchangeability, Martigales. Springer-Verlag, New York (1978). | Zbl | MR
and ,[6] On the Self-normalized Bounded Laws of Iterated Logarithm in Banach Space. Stat. Prob. Lett. 19 (2003) 277-286. | Zbl
,[7] Toward a general law of the iterated logarithm in Banach space. Ann. Probab. 21 (1993) 2012-2045. | Zbl
,[8] Some limit theorem for emperical processes. Ann. Probab. 12 (1984) 929-989. | Zbl
and ,[9] Self-normalized bounded laws of the iterated logarithm in Banach spaces, in Probability in Banach Spaces 8, R. Dudley, M. Hahn and J. Kuelbs Eds. Birkhäuser Progr. Probab. 30 (1992) 292-303. | Zbl
,[10] Self-normalized laws of the iterated logarithm. Ann. Probab. 17 (1989) 1571-1601. | Zbl
and ,[11] Some extensions of the LIL via self-normalizations. Ann. Probab. 19 (1991) 380-395. | Zbl
and ,[12] Characterization of the law of the iterated logarithm in Babach spaces. Ann. Probab. 16 (1988) 1242-1264. | Zbl
and ,[13] Some applications of isoperimetric methods to strong limit theorems for sums of independent random variables. Ann. Probab. 18 (1990) 754-789. | Zbl
and ,[14] Probability in Banach Space. Springer-Verlag, Berlin (1991). | Zbl | MR
and ,[15] A general law of iterated logarithm. Z. Wahrsch. verw. Gebiete 68 (1985) 521-543. | Zbl
,Cité par Sources :