On the bounded laws of iterated logarithm in Banach space
ESAIM: Probability and Statistics, Tome 9 (2005), pp. 19-37.

Voir la notice de l'article provenant de la source Numdam

In the present paper, by using the inequality due to Talagrand's isoperimetric method, several versions of the bounded law of iterated logarithm for a sequence of independent Banach space valued random variables are developed and the upper limits for the non-random constant are given.

DOI : 10.1051/ps:2005002
Classification : 60F05, 60B12, 60F99
Keywords: Banach space, bounded law of iterated logarithm, isoperimetric inequality, Rademacher series, self-normalizer
@article{PS_2005__9__19_0,
     author = {Deng, Dianliang},
     title = {On the bounded laws of iterated logarithm in {Banach} space},
     journal = {ESAIM: Probability and Statistics},
     pages = {19--37},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2005},
     doi = {10.1051/ps:2005002},
     mrnumber = {2148959},
     zbl = {1136.60314},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2005002/}
}
TY  - JOUR
AU  - Deng, Dianliang
TI  - On the bounded laws of iterated logarithm in Banach space
JO  - ESAIM: Probability and Statistics
PY  - 2005
SP  - 19
EP  - 37
VL  - 9
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2005002/
DO  - 10.1051/ps:2005002
LA  - en
ID  - PS_2005__9__19_0
ER  - 
%0 Journal Article
%A Deng, Dianliang
%T On the bounded laws of iterated logarithm in Banach space
%J ESAIM: Probability and Statistics
%D 2005
%P 19-37
%V 9
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2005002/
%R 10.1051/ps:2005002
%G en
%F PS_2005__9__19_0
Deng, Dianliang. On the bounded laws of iterated logarithm in Banach space. ESAIM: Probability and Statistics, Tome 9 (2005), pp. 19-37. doi : 10.1051/ps:2005002. http://geodesic.mathdoc.fr/articles/10.1051/ps:2005002/

[1] A. De Acosta, Inequalities for B-valued random variables with application to the law of large numbers. Ann. Probab. 9 (1981) 157-161. | Zbl

[2] B. Von Bahr and C. Esseen, Inequalities for the rth absolute moments of a sum of random variables, 1r2. Ann. math. Statist. 36 (1965) 299-303. | Zbl

[3] X. Chen, On the law of iterated logarithm for independent Banach space valued random variables. Ann. Probab. 21 (1993) 1991-2011. | Zbl

[4] X. Chen, The Kolmogorov’s LIL of B-valued random elements and empirical processes. Acta Mathematica Sinica 36 (1993) 600-619. | Zbl

[5] Y.S. Chow and H. Teicher, Probability Theory: Independence, Interchangeability, Martigales. Springer-Verlag, New York (1978). | Zbl | MR

[6] D. Deng, On the Self-normalized Bounded Laws of Iterated Logarithm in Banach Space. Stat. Prob. Lett. 19 (2003) 277-286. | Zbl

[7] U. Einmahl, Toward a general law of the iterated logarithm in Banach space. Ann. Probab. 21 (1993) 2012-2045. | Zbl

[8] E. Gine and J. Zinn, Some limit theorem for emperical processes. Ann. Probab. 12 (1984) 929-989. | Zbl

[9] A. Godbole, Self-normalized bounded laws of the iterated logarithm in Banach spaces, in Probability in Banach Spaces 8, R. Dudley, M. Hahn and J. Kuelbs Eds. Birkhäuser Progr. Probab. 30 (1992) 292-303. | Zbl

[10] P. Griffin and J. Kuelbs, Self-normalized laws of the iterated logarithm. Ann. Probab. 17 (1989) 1571-1601. | Zbl

[11] P. Griffin and J. Kuelbs, Some extensions of the LIL via self-normalizations. Ann. Probab. 19 (1991) 380-395. | Zbl

[12] M. Ledoux and M. Talagrand, Characterization of the law of the iterated logarithm in Babach spaces. Ann. Probab. 16 (1988) 1242-1264. | Zbl

[13] M. Ledoux and M. Talagrand, Some applications of isoperimetric methods to strong limit theorems for sums of independent random variables. Ann. Probab. 18 (1990) 754-789. | Zbl

[14] M. Ledoux and M. Talagrand, Probability in Banach Space. Springer-Verlag, Berlin (1991). | Zbl | MR

[15] R. Wittmann, A general law of iterated logarithm. Z. Wahrsch. verw. Gebiete 68 (1985) 521-543. | Zbl

Cité par Sources :