Voir la notice de l'article provenant de la source Numdam
As a starting point we prove a functional central limit theorem for estimators of the invariant measure of a geometrically ergodic Harris-recurrent Markov chain in a multi-scale space. This allows to construct confidence bands for the invariant density with optimal (up to undersmoothing) -diameter by using wavelet projection estimators. In addition our setting applies to the drift estimation of diffusions observed discretely with fixed observation distance. We prove a functional central limit theorem for estimators of the drift function and finally construct adaptive confidence bands for the drift by using a completely data-driven estimator.
Söhl, Jakob 1 ; Trabs, Mathias 2
@article{PS_2016__20__432_0, author = {S\"ohl, Jakob and Trabs, Mathias}, title = {Adaptive confidence bands for {Markov} chains and diffusions: {Estimating} the invariant measure and the drift}, journal = {ESAIM: Probability and Statistics}, pages = {432--462}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2016017}, zbl = {1357.62198}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2016017/} }
TY - JOUR AU - Söhl, Jakob AU - Trabs, Mathias TI - Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift JO - ESAIM: Probability and Statistics PY - 2016 SP - 432 EP - 462 VL - 20 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2016017/ DO - 10.1051/ps/2016017 LA - en ID - PS_2016__20__432_0 ER -
%0 Journal Article %A Söhl, Jakob %A Trabs, Mathias %T Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift %J ESAIM: Probability and Statistics %D 2016 %P 432-462 %V 20 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2016017/ %R 10.1051/ps/2016017 %G en %F PS_2016__20__432_0
Söhl, Jakob; Trabs, Mathias. Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 432-462. doi: 10.1051/ps/2016017
Cité par Sources :