Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift
ESAIM: Probability and Statistics, Tome 20 (2016), pp. 432-462

Voir la notice de l'article provenant de la source Numdam

As a starting point we prove a functional central limit theorem for estimators of the invariant measure of a geometrically ergodic Harris-recurrent Markov chain in a multi-scale space. This allows to construct confidence bands for the invariant density with optimal (up to undersmoothing) L -diameter by using wavelet projection estimators. In addition our setting applies to the drift estimation of diffusions observed discretely with fixed observation distance. We prove a functional central limit theorem for estimators of the drift function and finally construct adaptive confidence bands for the drift by using a completely data-driven estimator.

Reçu le :
Accepté le :
DOI : 10.1051/ps/2016017
Classification : 62G15, 60F05, 60J05, 60J60, 62M05
Keywords: Adaptive confidence bands, diffusion, drift estimation, ergodic Markov chain, stationary density, Lepski’s method, functional central limit theorem

Söhl, Jakob 1 ; Trabs, Mathias 2

1 Statistical Laboratory, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, CB3 0WB Cambridge, UK.
2 Department of Mathematics, University of Hamburg, Bundesstraße 55, 20146 Hamburg, Germany.
@article{PS_2016__20__432_0,
     author = {S\"ohl, Jakob and Trabs, Mathias},
     title = {Adaptive confidence bands for {Markov} chains and diffusions: {Estimating} the invariant measure and the drift},
     journal = {ESAIM: Probability and Statistics},
     pages = {432--462},
     publisher = {EDP-Sciences},
     volume = {20},
     year = {2016},
     doi = {10.1051/ps/2016017},
     zbl = {1357.62198},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2016017/}
}
TY  - JOUR
AU  - Söhl, Jakob
AU  - Trabs, Mathias
TI  - Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift
JO  - ESAIM: Probability and Statistics
PY  - 2016
SP  - 432
EP  - 462
VL  - 20
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2016017/
DO  - 10.1051/ps/2016017
LA  - en
ID  - PS_2016__20__432_0
ER  - 
%0 Journal Article
%A Söhl, Jakob
%A Trabs, Mathias
%T Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift
%J ESAIM: Probability and Statistics
%D 2016
%P 432-462
%V 20
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2016017/
%R 10.1051/ps/2016017
%G en
%F PS_2016__20__432_0
Söhl, Jakob; Trabs, Mathias. Adaptive confidence bands for Markov chains and diffusions: Estimating the invariant measure and the drift. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 432-462. doi: 10.1051/ps/2016017

Cité par Sources :