Voir la notice de l'article provenant de la source Numdam
We present some classical and weighted Poincaré inequalities for some one-dimensional probability measures. This work is the one-dimensional counterpart of a recent study achieved by the authors for a class of spherically symmetric probability measures in dimension larger than 2. Our strategy is based on two main ingredients: on the one hand, the optimal constant in the desired weighted Poincaré inequality has to be rewritten as the spectral gap of a convenient Markovian diffusion operator, and on the other hand we use a recent result given by the two first authors, which allows to estimate precisely this spectral gap. In particular we are able to capture its exact value for some examples.
Bonnefont, Michel 1 ; Joulin, Aldéric 2 ; Ma, Yutao 3
@article{PS_2016__20__18_0, author = {Bonnefont, Michel and Joulin, Ald\'eric and Ma, Yutao}, title = {A note on spectral gap and weighted {Poincar\'e} inequalities for some one-dimensional diffusions}, journal = {ESAIM: Probability and Statistics}, pages = {18--29}, publisher = {EDP-Sciences}, volume = {20}, year = {2016}, doi = {10.1051/ps/2015019}, mrnumber = {3519678}, zbl = {1355.60103}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015019/} }
TY - JOUR AU - Bonnefont, Michel AU - Joulin, Aldéric AU - Ma, Yutao TI - A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions JO - ESAIM: Probability and Statistics PY - 2016 SP - 18 EP - 29 VL - 20 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015019/ DO - 10.1051/ps/2015019 LA - en ID - PS_2016__20__18_0 ER -
%0 Journal Article %A Bonnefont, Michel %A Joulin, Aldéric %A Ma, Yutao %T A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions %J ESAIM: Probability and Statistics %D 2016 %P 18-29 %V 20 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015019/ %R 10.1051/ps/2015019 %G en %F PS_2016__20__18_0
Bonnefont, Michel; Joulin, Aldéric; Ma, Yutao. A note on spectral gap and weighted Poincaré inequalities for some one-dimensional diffusions. ESAIM: Probability and Statistics, Tome 20 (2016), pp. 18-29. doi : 10.1051/ps/2015019. http://geodesic.mathdoc.fr/articles/10.1051/ps/2015019/
Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Func. Anal. 254 (2008) 727–759. | MR | Zbl | DOI
, and ,Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37 (2009) 403–427. | MR | Zbl | DOI
and ,Intertwining relations for one-dimensional diffusions and application to functional inequalities. Pot. Anal. 41 (2014) 1005–1031. | MR | Zbl | DOI
and ,M. Bonnefont, A. Joulin and Y. Ma, Spectral gap for spherically symmetric log-concave probability measures, and beyond. Preprint arXiv:1406.4621 (2014). | MR
On extensions of the Brunn–Minkovski and Prékopa–Leindler theorems, including inequalities for log-concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22 (1976) 366–389. | MR | Zbl | DOI
and ,Functional inequalities for heavy tailed distributions and application to isoperimetry. Electronic J. Prob. 15 (2010) 346–385. | MR | Zbl | DOI
, , and ,Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. China Ser. A 42 (1999) 805–815. | MR | Zbl | DOI
,M.F. Chen, Eigenvalues, Inequalities, and Ergodic Theory. Probability and its Applications. Springer-Verlag London, Ltd., London (2005). | MR | Zbl
Estimation of spectral gap for elliptic operators. Trans. Amer. Math. Soc. 349 (1997) 1239–1267. | MR | Zbl | DOI
and ,Lipschitzian norm estimate of one-dimensional Poisson equations and applications. Ann. Inst. Henri Poincaré Probab. Statist. 47 (2011) 450–465. | MR | Zbl | mathdoc-id | DOI
and ,Poincaré inequalities and dimension free concentration of measure. Ann. Inst. Henri Poincaré Probab. Statist. 46 (2010) 708–739. | MR | Zbl | mathdoc-id | DOI
,Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comp. 41 (1983) 607–611. | MR | Zbl
,M. Ledoux, Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXIII, 120-216, Vol. 1709 of Lect. Notes Math. Springer, Berlin (1999). | MR | Zbl | mathdoc-id
M. Ledoux, Spectral gap, logarithmic Sobolev constant, and geometric bounds. Surv. Differ. Geom., IX, Int. Press, Somerville, MA (2004) 219-240. | MR | Zbl
Quand est-ce que des bornes de Hardy permettent de calculer une constante de Poincaré exacte sur la droite? Ann. Fac. Sci. Toulouse Math. 17 (2008) 121–192. | MR | Zbl | mathdoc-id | DOI
,Hardy’s inequality with weights. Stud. Math. 44 (1972) 31–38. | MR | Zbl | DOI
,Cité par Sources :