We consider a weighted random ball model generated by a Poisson measure. The macroscopic behaviour of the weight amassed on this model by a configuration has recently received attention. In this paper, we complement the previous finite dimensional distribution fluctuation results and propose functional convergences of such functionals on the set of configurations.
DOI : 10.1051/ps/2015016
Keywords: Self-similarity, generalized random fields, functional convergence, tightness, Poisson point process
Breton, Jean-Christophe  1 ; Gobard, Renan  1
@article{PS_2015__19__782_0,
author = {Breton, Jean-Christophe and Gobard, Renan},
title = {Infinite dimensional functional convergences in random balls model},
journal = {ESAIM: Probability and Statistics},
pages = {782--793},
year = {2015},
publisher = {EDP-Sciences},
volume = {19},
doi = {10.1051/ps/2015016},
zbl = {1333.60061},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015016/}
}
TY - JOUR AU - Breton, Jean-Christophe AU - Gobard, Renan TI - Infinite dimensional functional convergences in random balls model JO - ESAIM: Probability and Statistics PY - 2015 SP - 782 EP - 793 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015016/ DO - 10.1051/ps/2015016 LA - en ID - PS_2015__19__782_0 ER -
%0 Journal Article %A Breton, Jean-Christophe %A Gobard, Renan %T Infinite dimensional functional convergences in random balls model %J ESAIM: Probability and Statistics %D 2015 %P 782-793 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015016/ %R 10.1051/ps/2015016 %G en %F PS_2015__19__782_0
Breton, Jean-Christophe; Gobard, Renan. Infinite dimensional functional convergences in random balls model. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 782-793. doi: 10.1051/ps/2015016
Cité par Sources :
