Voir la notice de l'article provenant de la source Numdam
We consider a weighted random ball model generated by a Poisson measure. The macroscopic behaviour of the weight amassed on this model by a configuration has recently received attention. In this paper, we complement the previous finite dimensional distribution fluctuation results and propose functional convergences of such functionals on the set of configurations.
Breton, Jean-Christophe 1 ; Gobard, Renan 1
@article{PS_2015__19__782_0, author = {Breton, Jean-Christophe and Gobard, Renan}, title = {Infinite dimensional functional convergences in random balls model}, journal = {ESAIM: Probability and Statistics}, pages = {782--793}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2015016}, zbl = {1333.60061}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015016/} }
TY - JOUR AU - Breton, Jean-Christophe AU - Gobard, Renan TI - Infinite dimensional functional convergences in random balls model JO - ESAIM: Probability and Statistics PY - 2015 SP - 782 EP - 793 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015016/ DO - 10.1051/ps/2015016 LA - en ID - PS_2015__19__782_0 ER -
%0 Journal Article %A Breton, Jean-Christophe %A Gobard, Renan %T Infinite dimensional functional convergences in random balls model %J ESAIM: Probability and Statistics %D 2015 %P 782-793 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015016/ %R 10.1051/ps/2015016 %G en %F PS_2015__19__782_0
Breton, Jean-Christophe; Gobard, Renan. Infinite dimensional functional convergences in random balls model. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 782-793. doi : 10.1051/ps/2015016. http://geodesic.mathdoc.fr/articles/10.1051/ps/2015016/
Self-similar random fields and rescaled random balls models. J. Theoret. Probab. 23 (2010) 1110–1141. | Zbl
, and ,Rescaled weighted random balls models and stable self-similar random fields. Stochastic Process. Appl. 119 (2009) 3633–3652. | Zbl
and ,Functional macroscopic behavior of weighted random ball model. Alea, Lat. Am. J. Probab. Math. Stat. 8 (2011) 177–196. | Zbl
and ,H. Brézis, Analyse fonctionnelle. Masson (1983). | Zbl
W. Feller, An Introduction to Probability Theory and its Applications. Wiley (1966), Vol. 2. | Zbl
I. Kaj, Aspects of wireless network modeling based on Poisson point processes Fields. Institute Workshop on Applied Probability, Carleton University. Available at: http://www.math.uu.se/ĩkaj/preprints/wirelessnotes2.pdf (2006).
Scaling limits for random fields with long-range dependence. Ann. Probab. 35 (2007) 528–550. | Zbl
, , and ,O. Kallenberg, Foundations of Modern Probability, 2nd edition. Springer, New-York (2002). | Zbl
Is network traffic approximated by stable Lévy motion of fractional Brownian motion. Ann. Appl. Probab. 12 (2002) 23–68. | Zbl
, , and ,G. Samorodnitsky and M.S. Taqqu, Stable non-Gaussian random processes. Stochastic Modeling, Chapman & Hall (1994). | Zbl
M. Shaked and G. Shanthikumar, Stochastic orders and their applications. Probability and Mathematical Statistics. Academic Press (1994). | Zbl
Inequalities for the th absolute moment of a sum of random variables, . Ann. Math. Statist. 36 (1965) 299–303. | Zbl
and ,Co-Channel interference modeling in a Poisson field of interferers in wireless communications. IEEE Trans. Signal Process. 51 (2003) 64–76. | Zbl
and ,Cité par Sources :