Deviation inequalities for bifurcating Markov chains on Galton−Watson tree
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 689-724

Voir la notice de l'article provenant de la source Numdam

We are interested in bifurcating Markov chains on Galton−Watson tree. These processes are an extension of bifurcating Markov chains, which was introduced by Guyon to detect cellular aging from cell lineage, in case the index set is a binary Galton−Watson process. First, under geometric ergodicity assumption of an embedded Markov chain, we provide polynomial deviation inequalities for properly normalized sums of bifurcating Markov chains on Galton−Watson tree. Next, under some uniformity, we derive exponential inequalities. These results allow to exhibit different regimes of convergence which correspond to a competition between the geometric ergodic speed of the underlying Markov chain and the exponential growth of the Galton−Watson tree. As application, we derive deviation inequalities (for either the Gaussian setting or the bounded setting) for the least-squares estimator of autoregressive parameters of bifurcating autoregressive processes with missing data which allow, in the case of cell division, to take into account the cell’s death.

DOI : 10.1051/ps/2015007
Classification : 60E15, 60J80, 60J10
Keywords: Bifurcating Markov chains, Galton−Watson processes, ergodicity, deviation inequalities, first order bifurcating autoregressive process with missing data, cellular aging

Bitseki Penda, S. Valère 1

1 CMAP, UMR 7641, École polytechnique CNRS, Route de Saclay, 91128 Palaiseau, France
@article{PS_2015__19__689_0,
     author = {Bitseki Penda, S. Val\`ere},
     title = {Deviation inequalities for bifurcating {Markov} chains on {Galton\ensuremath{-}Watson} tree},
     journal = {ESAIM: Probability and Statistics},
     pages = {689--724},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015007},
     zbl = {1335.60136},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015007/}
}
TY  - JOUR
AU  - Bitseki Penda, S. Valère
TI  - Deviation inequalities for bifurcating Markov chains on Galton−Watson tree
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 689
EP  - 724
VL  - 19
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015007/
DO  - 10.1051/ps/2015007
LA  - en
ID  - PS_2015__19__689_0
ER  - 
%0 Journal Article
%A Bitseki Penda, S. Valère
%T Deviation inequalities for bifurcating Markov chains on Galton−Watson tree
%J ESAIM: Probability and Statistics
%D 2015
%P 689-724
%V 19
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015007/
%R 10.1051/ps/2015007
%G en
%F PS_2015__19__689_0
Bitseki Penda, S. Valère. Deviation inequalities for bifurcating Markov chains on Galton−Watson tree. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 689-724. doi: 10.1051/ps/2015007

Cité par Sources :