Poisson boundary of a relativistic diffusion in curved space-times: an example
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 502-514

Voir la notice de l'article provenant de la source Numdam

We study in details the long-time asymptotic behavior of a relativistic diffusion taking values in the unitary tangent bundle of a curved Lorentzian manifold, namely a spatially flat and fast expanding Robertson–Walker space-time. We prove in particular that the Poisson boundary of the diffusion can be identified with the causal boundary of the underlying manifold.

Reçu le :
DOI : 10.1051/ps/2015003
Classification : 60J60, 60J45, 83F05
Keywords: Relativistic diffusion, lorentzian manifolds, poisson boundary, causal boundary

Angst, Jürgen 1

1 IRMAR, Université Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France
@article{PS_2015__19__502_0,
     author = {Angst, J\"urgen},
     title = {Poisson boundary of a relativistic diffusion in curved space-times: an example},
     journal = {ESAIM: Probability and Statistics},
     pages = {502--514},
     publisher = {EDP-Sciences},
     volume = {19},
     year = {2015},
     doi = {10.1051/ps/2015003},
     zbl = {1333.60168},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/}
}
TY  - JOUR
AU  - Angst, Jürgen
TI  - Poisson boundary of a relativistic diffusion in curved space-times: an example
JO  - ESAIM: Probability and Statistics
PY  - 2015
SP  - 502
EP  - 514
VL  - 19
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/
DO  - 10.1051/ps/2015003
LA  - en
ID  - PS_2015__19__502_0
ER  - 
%0 Journal Article
%A Angst, Jürgen
%T Poisson boundary of a relativistic diffusion in curved space-times: an example
%J ESAIM: Probability and Statistics
%D 2015
%P 502-514
%V 19
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/
%R 10.1051/ps/2015003
%G en
%F PS_2015__19__502_0
Angst, Jürgen. Poisson boundary of a relativistic diffusion in curved space-times: an example. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 502-514. doi: 10.1051/ps/2015003

Cité par Sources :