Voir la notice de l'article provenant de la source Numdam
We study in details the long-time asymptotic behavior of a relativistic diffusion taking values in the unitary tangent bundle of a curved Lorentzian manifold, namely a spatially flat and fast expanding Robertson–Walker space-time. We prove in particular that the Poisson boundary of the diffusion can be identified with the causal boundary of the underlying manifold.
Angst, Jürgen 1
@article{PS_2015__19__502_0, author = {Angst, J\"urgen}, title = {Poisson boundary of a relativistic diffusion in curved space-times: an example}, journal = {ESAIM: Probability and Statistics}, pages = {502--514}, publisher = {EDP-Sciences}, volume = {19}, year = {2015}, doi = {10.1051/ps/2015003}, zbl = {1333.60168}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/} }
TY - JOUR AU - Angst, Jürgen TI - Poisson boundary of a relativistic diffusion in curved space-times: an example JO - ESAIM: Probability and Statistics PY - 2015 SP - 502 EP - 514 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/ DO - 10.1051/ps/2015003 LA - en ID - PS_2015__19__502_0 ER -
%0 Journal Article %A Angst, Jürgen %T Poisson boundary of a relativistic diffusion in curved space-times: an example %J ESAIM: Probability and Statistics %D 2015 %P 502-514 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/ %R 10.1051/ps/2015003 %G en %F PS_2015__19__502_0
Angst, Jürgen. Poisson boundary of a relativistic diffusion in curved space-times: an example. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 502-514. doi: 10.1051/ps/2015003
Cité par Sources :