Poisson boundary of a relativistic diffusion in curved space-times: an example
ESAIM: Probability and Statistics, Tome 19 (2015), pp. 502-514
Voir la notice de l'article provenant de la source Numdam
We study in details the long-time asymptotic behavior of a relativistic diffusion taking values in the unitary tangent bundle of a curved Lorentzian manifold, namely a spatially flat and fast expanding Robertson–Walker space-time. We prove in particular that the Poisson boundary of the diffusion can be identified with the causal boundary of the underlying manifold.
Reçu le :
DOI : 10.1051/ps/2015003
DOI : 10.1051/ps/2015003
Classification :
60J60, 60J45, 83F05
Keywords: Relativistic diffusion, lorentzian manifolds, poisson boundary, causal boundary
Keywords: Relativistic diffusion, lorentzian manifolds, poisson boundary, causal boundary
Affiliations des auteurs :
Angst, Jürgen 1
@article{PS_2015__19__502_0,
author = {Angst, J\"urgen},
title = {Poisson boundary of a relativistic diffusion in curved space-times: an example},
journal = {ESAIM: Probability and Statistics},
pages = {502--514},
publisher = {EDP-Sciences},
volume = {19},
year = {2015},
doi = {10.1051/ps/2015003},
zbl = {1333.60168},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/}
}
TY - JOUR AU - Angst, Jürgen TI - Poisson boundary of a relativistic diffusion in curved space-times: an example JO - ESAIM: Probability and Statistics PY - 2015 SP - 502 EP - 514 VL - 19 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/ DO - 10.1051/ps/2015003 LA - en ID - PS_2015__19__502_0 ER -
%0 Journal Article %A Angst, Jürgen %T Poisson boundary of a relativistic diffusion in curved space-times: an example %J ESAIM: Probability and Statistics %D 2015 %P 502-514 %V 19 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2015003/ %R 10.1051/ps/2015003 %G en %F PS_2015__19__502_0
Angst, Jürgen. Poisson boundary of a relativistic diffusion in curved space-times: an example. ESAIM: Probability and Statistics, Tome 19 (2015), pp. 502-514. doi: 10.1051/ps/2015003
Cité par Sources :