Adaptive estimation of a density function using beta kernels
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 400-417

Voir la notice de l'article provenant de la source Numdam

In this paper we are interested in the estimation of a density - defined on a compact interval of ℝ- from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski's method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated data.

DOI : 10.1051/ps/2014010
Classification : 62G05, 62G07, 62G20
Keywords: beta kernels, adaptive estimation, minimax rates, Hölder spaces
@article{PS_2014__18__400_0,
     author = {Bertin, Karine and Klutchnikoff, Nicolas},
     title = {Adaptive estimation of a density function using beta kernels},
     journal = {ESAIM: Probability and Statistics},
     pages = {400--417},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2014010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2014010/}
}
TY  - JOUR
AU  - Bertin, Karine
AU  - Klutchnikoff, Nicolas
TI  - Adaptive estimation of a density function using beta kernels
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 400
EP  - 417
VL  - 18
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2014010/
DO  - 10.1051/ps/2014010
LA  - en
ID  - PS_2014__18__400_0
ER  - 
%0 Journal Article
%A Bertin, Karine
%A Klutchnikoff, Nicolas
%T Adaptive estimation of a density function using beta kernels
%J ESAIM: Probability and Statistics
%D 2014
%P 400-417
%V 18
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2014010/
%R 10.1051/ps/2014010
%G en
%F PS_2014__18__400_0
Bertin, Karine; Klutchnikoff, Nicolas. Adaptive estimation of a density function using beta kernels. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 400-417. doi: 10.1051/ps/2014010

Cité par Sources :