Voir la notice de l'article provenant de la source Numdam
Fine regularity of stochastic processes is usually measured in a local way by local Hölder exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random fields, Adler proved that these two concepts are connected under the assumption of increment stationarity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the graph in any ball B(t0,ρ) are bounded from above using the local Hölder exponent at t0. We define the deterministic local sub-exponent of Gaussian processes, which allows to obtain an almost sure lower bound for these dimensions. Moreover, the Hausdorff dimensions of the sample path on an open interval are controlled almost surely by the minimum of the local exponents. Then, we apply these generic results to the cases of the set-indexed fractional Brownian motion on RN, the multifractional Brownian motion whose regularity function H is irregular and the generalized Weierstrass function, whose Hausdorff dimensions were unknown so far.
@article{PS_2014__18__418_0, author = {Herbin, Erick and Arras, Benjamin and Barruel, Geoffroy}, title = {From almost sure local regularity to almost sure {Hausdorff} dimension for gaussian fields}, journal = {ESAIM: Probability and Statistics}, pages = {418--440}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013044}, mrnumber = {3333997}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2013044/} }
TY - JOUR AU - Herbin, Erick AU - Arras, Benjamin AU - Barruel, Geoffroy TI - From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields JO - ESAIM: Probability and Statistics PY - 2014 SP - 418 EP - 440 VL - 18 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2013044/ DO - 10.1051/ps/2013044 LA - en ID - PS_2014__18__418_0 ER -
%0 Journal Article %A Herbin, Erick %A Arras, Benjamin %A Barruel, Geoffroy %T From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields %J ESAIM: Probability and Statistics %D 2014 %P 418-440 %V 18 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2013044/ %R 10.1051/ps/2013044 %G en %F PS_2014__18__418_0
Herbin, Erick; Arras, Benjamin; Barruel, Geoffroy. From almost sure local regularity to almost sure Hausdorff dimension for gaussian fields. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 418-440. doi : 10.1051/ps/2013044. http://geodesic.mathdoc.fr/articles/10.1051/ps/2013044/
[1] Hausdorff Dimension and Gaussian fields. Ann. Probab. 5 (1977) 145-151. | Zbl | MR
,[2] Random Fields and Geometry. Springer (2007). | Zbl | MR
and ,[3] Processus à régularité locale prescrite. C.R. Acad. Sci. Paris, Ser. I 333 (2001) 233-238. | Zbl | MR
and ,[4] Multiparameter multifractional brownian motion: local nondeterminism and joint continuity of the local times. Ann. Inst. H. Poincaré Probab. Statist (2011). | Zbl | MR | mathdoc-id
, and ,[5] Asymptotic Properties and Hausdorff Dimensions of Fractional Brownian Sheets. J. Fourier Anal. Appl. 11 (2005) 407-439. | Zbl | MR
and ,[6] Hölder properties of local times for fractional Brownian motions. Metrika 69 (2009) 125-152. | MR
, and ,[7] Local self-similarity and the Hausdorff dimension. C.R. Acad. Sci. Paris, Ser. I 336 (2003) 267-272. | Zbl | MR
, and ,[8] Elliptic Gaussian random processes. Rev. Mat. Iberoamericana 13 (1997) 19-90. | Zbl | MR
, and ,[9] Gaussian sample functions: Uniform dimension and Hölder conditions nowhere. Nagoya Math. J. 46 (1972) 63-86. | Zbl | MR
,[10] Sample path properties of the local time of multifractional Brownian motion. Bernoulli 13 (2007) 849-867. | Zbl | MR
, and ,[11] Sample Functions of the Gaussian Process. Ann. Probab. 1 (1973) 66-103. | Zbl | MR
,[12] Fractal Geometry: Mathematical Foundation and Applications, 2nd edn. Wiley (2003). | Zbl | MR
,[13] E. Herbin, From N-parameter fractional Brownian motions to N-parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 (2006) 1249-1284. | Zbl | MR
[14] Locally Asymptotic Self-similarity and Hölder Regularity. In preparation.
,[15] A set-indexed fractional Brownian motion. J. Theoret. Probab. 19 (2006) 337-364. | Zbl | MR
and ,[16] The Multiparameter fractional Brownian motion, in Math Everywhere. Edited by G. Aletti, M. Burger, A. Micheletti, D. Morale. Springer (2006). | Zbl | MR
and ,[17] Stochastic 2-microlocal analysis. Stoch. Process. Appl. 119 (2009) 2277-2311. | Zbl | MR
and ,[18] The Hausdorff dimension of graphs of Weierstrass functions. Proc. Amer. Math. Soc. 126 (1998) 791-800. | Zbl | MR
,[19] Some random series of functions. Cambridge studies in advanced mathematics. Cambridge University Press, 2nd edn. (1985). | Zbl | MR
,[20] Multiparameter processes: An Introduction to Random Fields. Springer Monographs in Mathematics. Springer-Verlag, New York (2002). | Zbl | MR
,[21] Lévy processes: capacity and Hausdorff dimension. Ann. Probab. 33 (2005) 841-878. | Zbl | MR
and ,[22] Optimal Hölder exponent for the SLE path. Duke Math. J. 159 (2011) 351-383. | Zbl | MR
and ,[23] Probability in Banach Spaces. Springer (1991). | Zbl | MR
and ,[24] Hölder regularity of the SLE trace. Trans. Amer. Math. Soc. 360 (2008) 3557-3578. | Zbl | MR
,[25] Stable and multistable processes and localisability. Ph.D. thesis of the University of St. Andrews (2010). | Zbl
,[26] Markov Processes, Gaussian Processes and Local Times. Cambridge University Press (2006). | Zbl | MR
and ,[27] Fernique-type inequalities and moduli of continuity of anisotropic Gaussian random fields. Trans. Amer. Math. Soc. 365 (2013) 1081-1107. | MR
, and ,[28] Local times of multifractional Brownian sheets. Bernoulli, 14 (2008) 865-898. | Zbl | MR
, and ,[29] Sample functions of the N-parameter Wiener process. Ann. Probab. 1 (1973) 138-163. | Zbl | MR
and ,[30] Multifractional brownian motion: Definition and preliminary results. Rapport de recherche INRIA (RR-2645) (1995) 39.
and ,[31] The Hausdorff dimension of the range of a process with stationary independent increments. J. Math. Mech. 19 (1969) 371-378. | Zbl | MR
,[32] How rich is the class of multifractional Brownian motions? Stoch. Proc. Appl. 116 (2006) 200-221. | Zbl | MR
and ,[33] An invariance principle for the law of the iterated logarithm. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964) 211-226. | Zbl | MR
,[34] The α-dimensional measure of the graph and set of zeroes of a Brownian path, Math. Proc. Cambridge Philos. Soc. 51 (1955) 265-274. | Zbl | MR
,[35] Sample path properties of bifractional Brownian motion. Bernoulli 13 (2007) 1023-1052. | Zbl | MR
and ,[36] Geometric properties of fractional Brownian sheets. J. Fourier Anal. Appl. 13 (2007) 1-37. | Zbl | MR
and ,[37] Dimension results for Gaussian vector fields and index-α stable fields. Ann. Probab. 23 (1995) 273-291. | Zbl | MR
,[38] Sample path properties of anisotropic Gaussian random fields, in A Minicourse on Stochastic Partial Differential Equations. Edited by D. Khoshnevisan and F. Rassoul-Agha. Springer, New York. Lect. Notes Math. 1962 (2009) 145-212. | Zbl | MR
,[39] On uniform modulus of continuity of random fields. Monatsh. Math. 159 (2010) 163-184. | Zbl | MR
,[40] Local properties of sample functions of random fields. Selected translations in Mathematics, Statistics and probab. 10 (1971) 233-245. | Zbl
,[41] The Hausdorff dimensions of the graph and range of the N-parameter Brownian motion in d-space. Ann. Probab. 3 169-171, 1975. | Zbl | MR
,Cité par Sources :