Means in complete manifolds: uniqueness and approximation
ESAIM: Probability and Statistics, Tome 18 (2014), pp. 185-206

Voir la notice de l'article provenant de la source Numdam

Let M be a complete Riemannian manifold, M ∈ ℕ and p ≥ 1. We prove that almost everywhere on x = (x1,...,xN) ∈ MN for Lebesgue measure in MN, the measure d μ ( x ) = 1 N k = 1 N δ x k has a unique p-mean ep(x). As a consequence, if X = (X1,...,XN) is a MN-valued random variable with absolutely continuous law, then almost surely μ(X(ω)) has a unique p-mean. In particular if (Xn)n ≥ 1 is an independent sample of an absolutely continuous law in M, then the process ep,n(ω) = ep(X1(ω),...,Xn(ω)) is well-defined. Assume M is compact and consider a probability measure ν in M. Using partial simulated annealing, we define a continuous semimartingale which converges in probability to the set of minimizers of the integral of distance at power p with respect to ν. When the set is a singleton, it converges to the p-mean.

DOI : 10.1051/ps/2013033
Classification : 60D05, 58C35, 37A30, 53C21, 60J65
Keywords: stochastic algorithms, diffusion processes, simulated annealing, homogenization, probability measures on compact riemannian manifolds, intrinsic p-means, instantaneous invariant measures, Gibbs measures, spectral gap at small temperature
@article{PS_2014__18__185_0,
     author = {Arnaudon, Marc and Miclo, Laurent},
     title = {Means in complete manifolds: uniqueness and approximation},
     journal = {ESAIM: Probability and Statistics},
     pages = {185--206},
     publisher = {EDP-Sciences},
     volume = {18},
     year = {2014},
     doi = {10.1051/ps/2013033},
     mrnumber = {3230874},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2013033/}
}
TY  - JOUR
AU  - Arnaudon, Marc
AU  - Miclo, Laurent
TI  - Means in complete manifolds: uniqueness and approximation
JO  - ESAIM: Probability and Statistics
PY  - 2014
SP  - 185
EP  - 206
VL  - 18
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2013033/
DO  - 10.1051/ps/2013033
LA  - en
ID  - PS_2014__18__185_0
ER  - 
%0 Journal Article
%A Arnaudon, Marc
%A Miclo, Laurent
%T Means in complete manifolds: uniqueness and approximation
%J ESAIM: Probability and Statistics
%D 2014
%P 185-206
%V 18
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2013033/
%R 10.1051/ps/2013033
%G en
%F PS_2014__18__185_0
Arnaudon, Marc; Miclo, Laurent. Means in complete manifolds: uniqueness and approximation. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 185-206. doi: 10.1051/ps/2013033

Cité par Sources :