Voir la notice de l'article provenant de la source Numdam
In this paper we consider a smoothness parameter estimation problem for a density function. The smoothness parameter of a function is defined in terms of Besov spaces. This paper is an extension of recent results (K. Dziedziul, M. Kucharska, B. Wolnik, Estimation of the smoothness parameter). The construction of the estimator is based on wavelets coefficients. Although we believe that the effective estimation of the smoothness parameter is impossible in general case, we can show that it becomes possible for some classes of the density functions.
@article{PS_2014__18__130_0, author = {Dziedziul, Karol and \'Cmiel, Bogdan}, title = {Density smoothness estimation problem using a wavelet approach}, journal = {ESAIM: Probability and Statistics}, pages = {130--144}, publisher = {EDP-Sciences}, volume = {18}, year = {2014}, doi = {10.1051/ps/2013030}, mrnumber = {3143736}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2013030/} }
TY - JOUR AU - Dziedziul, Karol AU - Ćmiel, Bogdan TI - Density smoothness estimation problem using a wavelet approach JO - ESAIM: Probability and Statistics PY - 2014 SP - 130 EP - 144 VL - 18 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2013030/ DO - 10.1051/ps/2013030 LA - en ID - PS_2014__18__130_0 ER -
%0 Journal Article %A Dziedziul, Karol %A Ćmiel, Bogdan %T Density smoothness estimation problem using a wavelet approach %J ESAIM: Probability and Statistics %D 2014 %P 130-144 %V 18 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2013030/ %R 10.1051/ps/2013030 %G en %F PS_2014__18__130_0
Dziedziul, Karol; Ćmiel, Bogdan. Density smoothness estimation problem using a wavelet approach. ESAIM: Probability and Statistics, Tome 18 (2014), pp. 130-144. doi : 10.1051/ps/2013030. http://geodesic.mathdoc.fr/articles/10.1051/ps/2013030/
[1] Empirical Bayesian Test of the Smoothness. Math. Methods Stat. 17 (2008) 1-18. | Zbl | MR
and ,[2] A Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets. Constructive Approximation 37 (2013) 295-309. | MR
,[3] Honest adaptive confidence bands and self-similar functions. Electron. J. Stat. 6 (2012) 1490-1516. | Zbl | MR
,[4] Adaptive Wavelet Estimation: A Block Thresholding and Oracle Inequality Approach. Ann. Stat. 27 (1999) 898-924. | Zbl | MR
,[5] An adaptation theory for nonparametric confidence intervals. Ann. Stat. 32 5 (2004) 1805-1840. | Zbl | MR
and ,[6] Adaptive confidence balls. Ann. Stat. 34 (2006) 202-228. | Zbl | MR
and ,[7] Block thresholding for density estimation: local and global adaptivity. J. Multivariate Anal. 95 (2005) 76-106. | Zbl | MR
and ,[8] Ten lectures on wavelets. SIAM Philadelphia (1992). | Zbl | MR
,[9] Minimax estimation via wavelet shrinkage. Ann. Stat. 26 (1996) 879-921. | Zbl | MR
and ,[10] Density estimation by wavelet thresholding. Ann. Stat. 24 (1996) 508-539. | Zbl | MR
, , and ,[11] Estimation of the smoothness parameter. J. Nonparametric Stat. 23 (2011) 991-1001. | Zbl | MR
, and ,[12] Confidence bands in density estimation. Ann. Stat. 38 (2010) 1122-1170. | Zbl | MR
and ,[13] Nonparametric reconstruction of a multifractal function from noisy data. Probab. Theory Relat. Fields 146 (2010) 155187. | Zbl | MR
and ,[14] Adaptive M-Estimation in Nonparametric Regression. Ann. Stat. 18 (1990) 1712-1728. | Zbl | MR
and ,[15] Wavelets, Approximation and Statistical Applications. Springer-Verlag, New York (1998). | Zbl | MR
, , and ,[16] On adaptive inference and confidence bands. Ann. Stat. 39 (2011) 2383-2409. | Zbl | MR
and ,[17] Change-point detection with non parametric regression. Statistics: A J. Theoret. Appl. Stat. 36 (2002) 9-31. | Zbl | MR
and ,[18] Estimation and detection of functions from anisotropic Sobolev classes. Electron. J. Stat. 5 (2011) 484-506. | Zbl | MR
and ,[19] Conjecture de Frisch et Parisi et généricité des fonctions multifractales. C. R. Acad. Sci. Paris Sér. I Math. 330 4 (2000) 265-270. | Zbl | MR
,[20] On nonparametric confidence intervals. Ann. Stat. 25 (1997) 2547-2554. | Zbl | MR
,[21] Wavelets and operators. In Cambridge Stud. Advanc. Math. of vol. 37. Translated from the 1990 French original by D.H. Salinger. Cambridge University Press, Cambridge. (1992). | Zbl | MR
,[22] Spline bases in Besov spaces. Bull. Acad. Pol. Sci. Serie Math. astr. Phys. 24 (1976) 319-325. | Zbl | MR
,[23] A Reliable Data-Based Bandwidth Selection Method for Kernel Density Estimation. J. Royal Stat. Soc. Ser. B. 53 (1991) 683-690. | Zbl | MR
and ,Cité par Sources :