Voir la notice de l'article provenant de la source Numdam
Gaussian mixture models are widely used to study clustering problems. These model-based clustering methods require an accurate estimation of the unknown data density by Gaussian mixtures. In Maugis and Michel (2009), a penalized maximum likelihood estimator is proposed for automatically selecting the number of mixture components. In the present paper, a collection of univariate densities whose logarithm is locally β-Hölder with moment and tail conditions are considered. We show that this penalized estimator is minimax adaptive to the β regularity of such densities in the Hellinger sense.
@article{PS_2013__17__698_0, author = {Maugis-Rabusseau, C. and Michel, B.}, title = {Adaptive density estimation for clustering with gaussian mixtures}, journal = {ESAIM: Probability and Statistics}, pages = {698--724}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2012018}, mrnumber = {3126158}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2012018/} }
TY - JOUR AU - Maugis-Rabusseau, C. AU - Michel, B. TI - Adaptive density estimation for clustering with gaussian mixtures JO - ESAIM: Probability and Statistics PY - 2013 SP - 698 EP - 724 VL - 17 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2012018/ DO - 10.1051/ps/2012018 LA - en ID - PS_2013__17__698_0 ER -
%0 Journal Article %A Maugis-Rabusseau, C. %A Michel, B. %T Adaptive density estimation for clustering with gaussian mixtures %J ESAIM: Probability and Statistics %D 2013 %P 698-724 %V 17 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2012018/ %R 10.1051/ps/2012018 %G en %F PS_2013__17__698_0
Maugis-Rabusseau, C.; Michel, B. Adaptive density estimation for clustering with gaussian mixtures. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 698-724. doi: 10.1051/ps/2012018
Cité par Sources :