Convolution property and exponential bounds for symmetric monotone densities
ESAIM: Probability and Statistics, Tome 17 (2013), pp. 605-613

Voir la notice de l'article provenant de la source Numdam

Our first theorem states that the convolution of two symmetric densities which are k-monotone on (0,∞) is again (symmetric) k-monotone provided 0 < k ≤ 1. We then apply this result, together with an extremality approach, to derive sharp moment and exponential bounds for distributions having such shape constrained densities.

DOI : 10.1051/ps/2012012
Classification : 60E10, 60E15
Keywords: multiply monotonicity, symmetric densities, unimodality, Wintner's theorem, Bernstein's inequality
@article{PS_2013__17__605_0,
     author = {Lef\`evre, Claude and Utev, Sergey},
     title = {Convolution property and exponential bounds for symmetric monotone densities},
     journal = {ESAIM: Probability and Statistics},
     pages = {605--613},
     publisher = {EDP-Sciences},
     volume = {17},
     year = {2013},
     doi = {10.1051/ps/2012012},
     mrnumber = {3085635},
     zbl = {1291.60030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2012012/}
}
TY  - JOUR
AU  - Lefèvre, Claude
AU  - Utev, Sergey
TI  - Convolution property and exponential bounds for symmetric monotone densities
JO  - ESAIM: Probability and Statistics
PY  - 2013
SP  - 605
EP  - 613
VL  - 17
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2012012/
DO  - 10.1051/ps/2012012
LA  - en
ID  - PS_2013__17__605_0
ER  - 
%0 Journal Article
%A Lefèvre, Claude
%A Utev, Sergey
%T Convolution property and exponential bounds for symmetric monotone densities
%J ESAIM: Probability and Statistics
%D 2013
%P 605-613
%V 17
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2012012/
%R 10.1051/ps/2012012
%G en
%F PS_2013__17__605_0
Lefèvre, Claude; Utev, Sergey. Convolution property and exponential bounds for symmetric monotone densities. ESAIM: Probability and Statistics, Tome 17 (2013), pp. 605-613. doi: 10.1051/ps/2012012

Cité par Sources :