Voir la notice de l'article provenant de la source Numdam
The P.O.T. method (Peaks Over Threshold) consists in using the generalized Pareto distribution (GPD) as an approximation for the distribution of excesses over a high threshold. In this work, we use a refinement of this approximation in order to estimate second order parameters of the model using the method of probability-weighted moments (PWM): in particular, this leads to the introduction of a new estimator for the second order parameter ρ, which will be compared to other recent estimators through some simulations. Asymptotic normality results are also proved. Our new estimator of ρ looks especially competitive when |ρ| is small.
@article{PS_2012__16__97_0, author = {Worms, Julien and Worms, Rym}, title = {Estimation of second order parameters using probability weighted moments}, journal = {ESAIM: Probability and Statistics}, pages = {97--113}, publisher = {EDP-Sciences}, volume = {16}, year = {2012}, doi = {10.1051/ps/2010017}, mrnumber = {2946122}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2010017/} }
TY - JOUR AU - Worms, Julien AU - Worms, Rym TI - Estimation of second order parameters using probability weighted moments JO - ESAIM: Probability and Statistics PY - 2012 SP - 97 EP - 113 VL - 16 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps/2010017/ DO - 10.1051/ps/2010017 LA - en ID - PS_2012__16__97_0 ER -
%0 Journal Article %A Worms, Julien %A Worms, Rym %T Estimation of second order parameters using probability weighted moments %J ESAIM: Probability and Statistics %D 2012 %P 97-113 %V 16 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps/2010017/ %R 10.1051/ps/2010017 %G en %F PS_2012__16__97_0
Worms, Julien; Worms, Rym. Estimation of second order parameters using probability weighted moments. ESAIM: Probability and Statistics, Tome 16 (2012), pp. 97-113. doi : 10.1051/ps/2010017. http://geodesic.mathdoc.fr/articles/10.1051/ps/2010017/
[1] Residual life time at a great age. Ann. Probab. 2 (1974) 792-801. | Zbl
and ,[2] A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator. Stat. Probab. Lett. 79 (2009) 295-303. | Zbl | MR
, and ,[3] Semi-parametric estimation for heavy tailed distributions. Extremes 13 (2010) 55-87. | Zbl | MR
and ,[4] Asymptotic behaviour of the probability-weighted moments and penultimate approximation. ESAIM : PS 7 (2003) 217-236. | Zbl | MR | mathdoc-id
, and ,[5] Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841-857. | Zbl | MR
, and ,[6] Approximation of the distribution of excesses through a generalized probability-weighted moments method. J. Statist. Plann. Inference 137 (2007) 841-857. | Zbl | MR
, and ,[7] Selecting the optimal sample fraction in univariate extreme value estimation. Stoc. Proc. Appl. 75 (1998) 149-172. | Zbl | MR
and ,[8] Estimation of the parameter controlling the speed of convergence in extreme value theory. Math. Methods Stat. 12 (2003) 155-176. | MR
, and ,[9] A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica 60 (2003) 193-213. | Zbl | MR
, and ,[10] Third order extended regular variation. Publ. Inst. Math. 80 (2006) 109-120. | Zbl | MR
, and ,[11] A note on second order conditions in extreme value theory : linking general and heavy tail conditions. REVSTAT Stat. J. 5 (2007) 285-304. | Zbl | MR
, , and ,[12] “Asymptotically unbiased” estimators of the tail index based on external estimation of the second order parameter. Extremes 5 (2002) 5-31. | Zbl | MR
and ,[13] Semi-parametric estimation of the second order parameter in statistics of extremes. Extremes 5 (2002) 387-414. | Zbl | MR
, and ,[14] Adaptive estimates of parameters of regular variation. Ann. Stat. 13 (1985) 331-341. | Zbl | MR
and ,[15] Parameter and quantile estimation for the generalized Pareto distribution. Technometrics 29 (1987) 339-349. | Zbl | MR
and ,[16] Asymptotically unbiased estimator for the extreme value index. Statist. Prob. Lett. 38 (1998) 107-115. | Zbl | MR
,[17] Statistical inference using extreme order statistics. Ann. Statist. 3 (1975) 119-131. | Zbl | MR
,[18] Rate of convergence for the generalized Pareto approximation of the excesses. Adv. Applied Prob. 35 (2003) 1007-1027. | Zbl | MR
and ,[19] Approximation Theorems of Mathematical Statistics. Wiley & Son (1980). | Zbl | MR
,[20] Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics (2000). | Zbl
,[21] Penultimate approximation for the distribution of the excesses. ESAIM : PS 6 (2002) 21-31. | Zbl | MR | mathdoc-id
,Cité par Sources :