Stochastic algorithm for bayesian mixture effect template estimation
ESAIM: Probability and Statistics, Tome 14 (2010), pp. 382-408

Voir la notice de l'article provenant de la source Numdam

The estimation of probabilistic deformable template models in computer vision or of probabilistic atlases in Computational Anatomy are core issues in both fields. A first coherent statistical framework where the geometrical variability is modelled as a hidden random variable has been given by [S. Allassonnière et al., J. Roy. Stat. Soc. 69 (2007) 3-29]. They introduce a bayesian approach and mixture of them to estimate deformable template models. A consistent stochastic algorithm has been introduced in [S. Allassonnière et al. (in revision)] to face the problem encountered in [S. Allassonnière et al., J. Roy. Stat. Soc. 69 (2007) 3-29] for the convergence of the estimation algorithm for the one component model in the presence of noise. We propose here to go on in this direction of using some “SAEM-like” algorithm to approximate the MAP estimator in the general bayesian setting of mixture of deformable template models. We also prove the convergence of our algorithm toward a critical point of the penalised likelihood of the observations and illustrate this with handwritten digit images and medical images.

DOI : 10.1051/ps/2009001
Classification : 60J22, 62F10, 62F15, 62M40
Keywords: stochastic approximations, non rigid-deformable templates, shapes statistics, MAP estimation, bayesian method, mixture models
@article{PS_2010__14__382_0,
     author = {Allassonni\`ere, St\'ephanie and Kuhn, Estelle},
     title = {Stochastic algorithm for bayesian mixture effect template estimation},
     journal = {ESAIM: Probability and Statistics},
     pages = {382--408},
     publisher = {EDP-Sciences},
     volume = {14},
     year = {2010},
     doi = {10.1051/ps/2009001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps/2009001/}
}
TY  - JOUR
AU  - Allassonnière, Stéphanie
AU  - Kuhn, Estelle
TI  - Stochastic algorithm for bayesian mixture effect template estimation
JO  - ESAIM: Probability and Statistics
PY  - 2010
SP  - 382
EP  - 408
VL  - 14
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps/2009001/
DO  - 10.1051/ps/2009001
LA  - en
ID  - PS_2010__14__382_0
ER  - 
%0 Journal Article
%A Allassonnière, Stéphanie
%A Kuhn, Estelle
%T Stochastic algorithm for bayesian mixture effect template estimation
%J ESAIM: Probability and Statistics
%D 2010
%P 382-408
%V 14
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps/2009001/
%R 10.1051/ps/2009001
%G en
%F PS_2010__14__382_0
Allassonnière, Stéphanie; Kuhn, Estelle. Stochastic algorithm for bayesian mixture effect template estimation. ESAIM: Probability and Statistics, Tome 14 (2010), pp. 382-408. doi: 10.1051/ps/2009001

Cité par Sources :