Riemann Solvers for some Hyperbolic Problems with a Source Term
ESAIM. Proceedings, Tome 6 (1999), pp. 75-90.

Voir la notice de l'article provenant de la source EDP Sciences

In many problems of fluid dynamics, the source term corresponds to the interaction with the surrounding medium, including the geometry and some internal forces (friction, gravity, Coriolis acceleration, etc..) In environmental problems, this interaction is often a very dominant term which characterizes the well balanced states. In a numerical simulation, it is obviously important to be able to reproduce these equilibria and maintain them for a large number of timesteps, or at least, to avoid a stable equilibrium to be disturbed and destabilized by an unsuitable method. This is the matter discussed in the present paper.
DOI : 10.1051/proc:1999047

Alain Yves Leroux 1

1 GRAMM - Mathématiques Appliquées, Université de Bordeaux I 33405 Talence Cedex, France
@article{EP_1999_6_a5,
     author = {Alain Yves Leroux},
     title = {Riemann {Solvers} for some {Hyperbolic} {Problems} with a {Source} {Term}},
     journal = {ESAIM. Proceedings},
     pages = {75--90},
     publisher = {mathdoc},
     volume = {6},
     year = {1999},
     doi = {10.1051/proc:1999047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1999047/}
}
TY  - JOUR
AU  - Alain Yves Leroux
TI  - Riemann Solvers for some Hyperbolic Problems with a Source Term
JO  - ESAIM. Proceedings
PY  - 1999
SP  - 75
EP  - 90
VL  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:1999047/
DO  - 10.1051/proc:1999047
LA  - en
ID  - EP_1999_6_a5
ER  - 
%0 Journal Article
%A Alain Yves Leroux
%T Riemann Solvers for some Hyperbolic Problems with a Source Term
%J ESAIM. Proceedings
%D 1999
%P 75-90
%V 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1999047/
%R 10.1051/proc:1999047
%G en
%F EP_1999_6_a5
Alain Yves Leroux. Riemann Solvers for some Hyperbolic Problems with a Source Term. ESAIM. Proceedings, Tome 6 (1999), pp. 75-90. doi : 10.1051/proc:1999047. http://geodesic.mathdoc.fr/articles/10.1051/proc:1999047/

Cité par Sources :