Equilibrium configurations of point vortices in doubly connected domains
ESAIM. Proceedings, Tome 1 (1996), pp. 325-337.

Voir la notice de l'article provenant de la source EDP Sciences

Point vortex flows of a steady, two dimensional, inviscid, and incompressible fluid are studied for doubly connected geometries. The Routh function is explicitly constructed, and equilibrium configurations of vortices are found by determining critical points numerically. The numerical computations make use of an analogue of the Schwarz-Christoffel transformation for doubly connected regions.
DOI : 10.1051/proc:1996008

Alan R. Elcrat 1 ; Chenglie Hu 1 ; Kenneth G. Miller 1

1 Wichita State University Wichita, KS 67260-0033, USA
@article{EP_1996_1_a22,
     author = {Alan R. Elcrat and Chenglie Hu and Kenneth G. Miller},
     title = {Equilibrium configurations of point vortices in doubly connected domains},
     journal = {ESAIM. Proceedings},
     pages = {325--337},
     publisher = {mathdoc},
     volume = {1},
     year = {1996},
     doi = {10.1051/proc:1996008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:1996008/}
}
TY  - JOUR
AU  - Alan R. Elcrat
AU  - Chenglie Hu
AU  - Kenneth G. Miller
TI  - Equilibrium configurations of point vortices in doubly connected domains
JO  - ESAIM. Proceedings
PY  - 1996
SP  - 325
EP  - 337
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:1996008/
DO  - 10.1051/proc:1996008
LA  - en
ID  - EP_1996_1_a22
ER  - 
%0 Journal Article
%A Alan R. Elcrat
%A Chenglie Hu
%A Kenneth G. Miller
%T Equilibrium configurations of point vortices in doubly connected domains
%J ESAIM. Proceedings
%D 1996
%P 325-337
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:1996008/
%R 10.1051/proc:1996008
%G en
%F EP_1996_1_a22
Alan R. Elcrat; Chenglie Hu; Kenneth G. Miller. Equilibrium configurations of point vortices in doubly connected domains. ESAIM. Proceedings, Tome 1 (1996), pp. 325-337. doi : 10.1051/proc:1996008. http://geodesic.mathdoc.fr/articles/10.1051/proc:1996008/

Cité par Sources :