1Laboratoire de Mathématiques, Bâtiment 425, Université Paris-Sud XI, F-91405 Orsay Cedex, France. 2Laboratoire des signaux et systèmes (L2S) Supélec - 3 rue Joliot-Curie 91192 Gif-sur-Yvette cedex, France.
ESAIM. Proceedings, Tome 25 (2008), pp. 29-43
Cet article a éte moissonné depuis la source EDP Sciences
This paper investigates the well-posedness for a non linear transport equation system that models the spread of prion diseases in a managed flock. Existence and uniqueness of solutions are proved with the use of semigroup theory in the case of a Lipschitz perturbation and presence of boundary conditions. Finally, the characteristics of the transport part of the equations allow us to give an implicit expression of the solution.
1
Laboratoire de Mathématiques, Bâtiment 425, Université Paris-Sud XI, F-91405 Orsay Cedex, France.
2
Laboratoire des signaux et systèmes (L2S) Supélec - 3 rue Joliot-Curie 91192 Gif-sur-Yvette cedex, France.
@article{EP_2008_25_a3,
author = {A. Perasso and B. Laroche},
title = {Well-posedness of an epidemiological problem described by an evolution {PDE}},
journal = {ESAIM. Proceedings},
pages = {29--43},
year = {2008},
volume = {25},
doi = {10.1051/proc:082503},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:082503/}
}
TY - JOUR
AU - A. Perasso
AU - B. Laroche
TI - Well-posedness of an epidemiological problem described by an evolution PDE
JO - ESAIM. Proceedings
PY - 2008
SP - 29
EP - 43
VL - 25
UR - http://geodesic.mathdoc.fr/articles/10.1051/proc:082503/
DO - 10.1051/proc:082503
LA - en
ID - EP_2008_25_a3
ER -
%0 Journal Article
%A A. Perasso
%A B. Laroche
%T Well-posedness of an epidemiological problem described by an evolution PDE
%J ESAIM. Proceedings
%D 2008
%P 29-43
%V 25
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:082503/
%R 10.1051/proc:082503
%G en
%F EP_2008_25_a3
A. Perasso; B. Laroche. Well-posedness of an epidemiological problem described by an evolution PDE. ESAIM. Proceedings, Tome 25 (2008), pp. 29-43. doi: 10.1051/proc:082503