Well-posedness of an epidemiological problem described by an evolution PDE
ESAIM. Proceedings, Tome 25 (2008), pp. 29-43.

Voir la notice de l'article provenant de la source EDP Sciences

This paper investigates the well-posedness for a non linear transport equation system that models the spread of prion diseases in a managed flock. Existence and uniqueness of solutions are proved with the use of semigroup theory in the case of a Lipschitz perturbation and presence of boundary conditions. Finally, the characteristics of the transport part of the equations allow us to give an implicit expression of the solution.
DOI : 10.1051/proc:082503

A. Perasso 1, 2 ; B. Laroche 2

1 Laboratoire de Mathématiques, Bâtiment 425, Université Paris-Sud XI, F-91405 Orsay Cedex, France.
2 Laboratoire des signaux et systèmes (L2S) Supélec - 3 rue Joliot-Curie 91192 Gif-sur-Yvette cedex, France.
@article{EP_2008_25_a3,
     author = {A. Perasso and B. Laroche},
     title = {Well-posedness of an epidemiological problem described by an evolution {PDE}},
     journal = {ESAIM. Proceedings},
     pages = {29--43},
     publisher = {mathdoc},
     volume = {25},
     year = {2008},
     doi = {10.1051/proc:082503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc:082503/}
}
TY  - JOUR
AU  - A. Perasso
AU  - B. Laroche
TI  - Well-posedness of an epidemiological problem described by an evolution PDE
JO  - ESAIM. Proceedings
PY  - 2008
SP  - 29
EP  - 43
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc:082503/
DO  - 10.1051/proc:082503
LA  - en
ID  - EP_2008_25_a3
ER  - 
%0 Journal Article
%A A. Perasso
%A B. Laroche
%T Well-posedness of an epidemiological problem described by an evolution PDE
%J ESAIM. Proceedings
%D 2008
%P 29-43
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc:082503/
%R 10.1051/proc:082503
%G en
%F EP_2008_25_a3
A. Perasso; B. Laroche. Well-posedness of an epidemiological problem described by an evolution PDE. ESAIM. Proceedings, Tome 25 (2008), pp. 29-43. doi : 10.1051/proc:082503. http://geodesic.mathdoc.fr/articles/10.1051/proc:082503/

Cité par Sources :