Derivation via Hamilton's principle of a new shallow-water model using a color function for the macroscopic description of partial wetting phenomena
ESAIM. Proceedings, Tome 72 (2023), pp. 64-92.

Voir la notice de l'article provenant de la source EDP Sciences

This paper presents a new shallow-water type model suitable for the simulation of partially wetting liquid films without the need for very fine resolution of the contact line phenomena, which is particularly suitable for industrial applications. This model is based on the introduction of a color function, propagated at the averaged velocity of the bulk flow, and equal to one where there is a liquid film and zero in the dry zone, which implies a non zero gradient only at the interface. This approach has the advantage of easily locating the interface, allowing to model macroscopically the forces acting at the contact line, which is essential for the simulation of partial wetting phenomena. The formal derivation of this model is based on the principle of least action known as Hamilton's principle. Here this principle is applied in a full Eulerian form to derive the complete system of equations with the color function. This method proves to be particularly suitable for this type of development and as an illustration it is also applied to recover another model proposed by Lallement et al. [39, 73]. Finally, both models are compared from a theoretical point of view and the advantages of the new color function based model are discussed.
DOI : 10.1051/proc/202372064

Bastien Delacroix 1 ; Maxime Bouyges 1 ; Ghislain Blanchard 1 ; Claire Laurent 1 ; Philippe Villedieu 1

1 ONERA/DMPE, Universite de Toulouse, F-31055 - France
@article{EP_2023_72_a4,
     author = {Bastien Delacroix and Maxime Bouyges and Ghislain Blanchard and Claire Laurent and Philippe Villedieu},
     title = {Derivation via {Hamilton's} principle of a new shallow-water model using a color function for the macroscopic description of partial wetting phenomena},
     journal = {ESAIM. Proceedings},
     pages = {64--92},
     publisher = {mathdoc},
     volume = {72},
     year = {2023},
     doi = {10.1051/proc/202372064},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202372064/}
}
TY  - JOUR
AU  - Bastien Delacroix
AU  - Maxime Bouyges
AU  - Ghislain Blanchard
AU  - Claire Laurent
AU  - Philippe Villedieu
TI  - Derivation via Hamilton's principle of a new shallow-water model using a color function for the macroscopic description of partial wetting phenomena
JO  - ESAIM. Proceedings
PY  - 2023
SP  - 64
EP  - 92
VL  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/202372064/
DO  - 10.1051/proc/202372064
LA  - en
ID  - EP_2023_72_a4
ER  - 
%0 Journal Article
%A Bastien Delacroix
%A Maxime Bouyges
%A Ghislain Blanchard
%A Claire Laurent
%A Philippe Villedieu
%T Derivation via Hamilton's principle of a new shallow-water model using a color function for the macroscopic description of partial wetting phenomena
%J ESAIM. Proceedings
%D 2023
%P 64-92
%V 72
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202372064/
%R 10.1051/proc/202372064
%G en
%F EP_2023_72_a4
Bastien Delacroix; Maxime Bouyges; Ghislain Blanchard; Claire Laurent; Philippe Villedieu. Derivation via Hamilton's principle of a new shallow-water model using a color function for the macroscopic description of partial wetting phenomena. ESAIM. Proceedings, Tome 72 (2023), pp. 64-92. doi : 10.1051/proc/202372064. http://geodesic.mathdoc.fr/articles/10.1051/proc/202372064/

Cité par Sources :