A new method for global optimization
ESAIM. Proceedings, Tome 71 (2021), pp. 121-130
Cet article a éte moissonné depuis la source EDP Sciences
This paper presents a new method for global optimization. We use exact quadratic regularization for the transformation of the multimodal problems to a problem of a maximum norm vector on a convex set. Quadratic regularization often allows you to convert a multimodal problem into a unimodal problem. For this, we use the shift of the feasible region along the bisector of the positive orthant. We use only local search (primal-dual interior point method) and a dichotomy method for search of a global extremum in the multimodal problems. The comparative numerical experiments have shown that this method is very efficient and promising.
@article{EP_2021_71_a11,
author = {Anatolii Kosolap},
title = {A new method for global optimization},
journal = {ESAIM. Proceedings},
pages = {121--130},
year = {2021},
volume = {71},
doi = {10.1051/proc/202171121},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202171121/}
}
Anatolii Kosolap. A new method for global optimization. ESAIM. Proceedings, Tome 71 (2021), pp. 121-130. doi: 10.1051/proc/202171121
Cité par Sources :