Opinion propagation on social networks: a mathematical standpoint
ESAIM. Proceedings, Tome 67 (2020), pp. 285-335.

Voir la notice de l'article provenant de la source EDP Sciences

These lecture notes address mathematical issues related to the modeling of opinion propagation on networks of the social type. Starting from the behavior of the simplest discrete linear model, we develop various standpoints and describe some extensions: stochastic interpretation, monitoring of a network, time continuous evolution problem, charismatic networks, links with discretized Partial Differential Equations, nonlinear models, inertial version and stability issues. These developments rely on basic mathematical tools, which makes them accessible at an undergraduate level. In a last section, we propose a new model of opinion propagation, where the opinion of an agent is described by a Gaussian density, and the (discrete) evolution equation is based on barycenters with respect to the Fisher metric.
DOI : 10.1051/proc/202067016

H. Lavenant 1 ; B. Maury 2

1 Department of Mathematics, University of British Columbia, Vancouver BC Canada
2 DMA, École normale supérieure, CNRS, PSL University, 75005 Paris, France
@article{EP_2020_67_a16,
     author = {H. Lavenant and B. Maury},
     title = {Opinion propagation on social networks: a mathematical standpoint},
     journal = {ESAIM. Proceedings},
     pages = {285--335},
     publisher = {mathdoc},
     volume = {67},
     year = {2020},
     doi = {10.1051/proc/202067016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/202067016/}
}
TY  - JOUR
AU  - H. Lavenant
AU  - B. Maury
TI  - Opinion propagation on social networks: a mathematical standpoint
JO  - ESAIM. Proceedings
PY  - 2020
SP  - 285
EP  - 335
VL  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/202067016/
DO  - 10.1051/proc/202067016
LA  - en
ID  - EP_2020_67_a16
ER  - 
%0 Journal Article
%A H. Lavenant
%A B. Maury
%T Opinion propagation on social networks: a mathematical standpoint
%J ESAIM. Proceedings
%D 2020
%P 285-335
%V 67
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/202067016/
%R 10.1051/proc/202067016
%G en
%F EP_2020_67_a16
H. Lavenant; B. Maury. Opinion propagation on social networks: a mathematical standpoint. ESAIM. Proceedings, Tome 67 (2020), pp. 285-335. doi : 10.1051/proc/202067016. http://geodesic.mathdoc.fr/articles/10.1051/proc/202067016/

Cité par Sources :