Crowd motion and evolution PDEs under density constraints
ESAIM. Proceedings, Tome 64 (2018), pp. 137-157.

Voir la notice de l'article provenant de la source EDP Sciences

This is a survey about the theory of density-constrained evolutions in theWasserstein space developed by B. Maury, the author, and their collaborators as a model for crowd motion. Connections with microscopic models and other PDEs are presented, as well as several time-discretization schemes based on variational techniques, together with the main theorems guaranteeing their convergence as a tool to prove existence results. Then, a section is devoted to the uniqueness question, and a last one to different numerical methods inspired by optimal transport.
DOI : 10.1051/proc/201864137

Filippo Santambrogio 1

1 Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, FRANCE; filippo.santambrogio@math.u-psud.fr
@article{EP_2018_64_a10,
     author = {Filippo Santambrogio},
     title = {Crowd motion and evolution {PDEs} under density constraints},
     journal = {ESAIM. Proceedings},
     pages = {137--157},
     publisher = {mathdoc},
     volume = {64},
     year = {2018},
     doi = {10.1051/proc/201864137},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201864137/}
}
TY  - JOUR
AU  - Filippo Santambrogio
TI  - Crowd motion and evolution PDEs under density constraints
JO  - ESAIM. Proceedings
PY  - 2018
SP  - 137
EP  - 157
VL  - 64
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201864137/
DO  - 10.1051/proc/201864137
LA  - en
ID  - EP_2018_64_a10
ER  - 
%0 Journal Article
%A Filippo Santambrogio
%T Crowd motion and evolution PDEs under density constraints
%J ESAIM. Proceedings
%D 2018
%P 137-157
%V 64
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201864137/
%R 10.1051/proc/201864137
%G en
%F EP_2018_64_a10
Filippo Santambrogio. Crowd motion and evolution PDEs under density constraints. ESAIM. Proceedings, Tome 64 (2018), pp. 137-157. doi : 10.1051/proc/201864137. http://geodesic.mathdoc.fr/articles/10.1051/proc/201864137/

Cité par Sources :