Solving the guiding-center model on a regular hexagonal mesh
ESAIM. Proceedings, Tome 53 (2016), pp. 149-176
Cet article a éte moissonné depuis la source EDP Sciences
This paper introduces a Semi-Lagrangian solver for the Vlasov-Poisson equations on a uniform hexagonal mesh. The latter is composed of equilateral triangles, thus it doesn’t contain any singularities, unlike polar meshes. We focus on the guiding-center model, for which we need to develop a Poisson solver for the hexagonal mesh in addition to the Vlasov solver. For the interpolation step of the Semi-Lagrangian scheme, a comparison is made between the use of Box-splines and of Hermite finite elements. The code will be adapted to more complex models and geometries in the future.
Affiliations des auteurs :
Michel Mehrenberger 1 ; Laura S. Mendoza 2, 3 ; Charles Prouveur 4 ; Eric Sonnendrücker 2, 3
@article{EP_2016_53_a10,
author = {Michel Mehrenberger and Laura S. Mendoza and Charles Prouveur and Eric Sonnendr\"ucker},
title = {Solving the guiding-center model on a regular hexagonal mesh},
journal = {ESAIM. Proceedings},
pages = {149--176},
year = {2016},
volume = {53},
doi = {10.1051/proc/201653010},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201653010/}
}
TY - JOUR AU - Michel Mehrenberger AU - Laura S. Mendoza AU - Charles Prouveur AU - Eric Sonnendrücker TI - Solving the guiding-center model on a regular hexagonal mesh JO - ESAIM. Proceedings PY - 2016 SP - 149 EP - 176 VL - 53 UR - http://geodesic.mathdoc.fr/articles/10.1051/proc/201653010/ DO - 10.1051/proc/201653010 LA - en ID - EP_2016_53_a10 ER -
%0 Journal Article %A Michel Mehrenberger %A Laura S. Mendoza %A Charles Prouveur %A Eric Sonnendrücker %T Solving the guiding-center model on a regular hexagonal mesh %J ESAIM. Proceedings %D 2016 %P 149-176 %V 53 %U http://geodesic.mathdoc.fr/articles/10.1051/proc/201653010/ %R 10.1051/proc/201653010 %G en %F EP_2016_53_a10
Michel Mehrenberger; Laura S. Mendoza; Charles Prouveur; Eric Sonnendrücker. Solving the guiding-center model on a regular hexagonal mesh. ESAIM. Proceedings, Tome 53 (2016), pp. 149-176. doi: 10.1051/proc/201653010
Cité par Sources :