Curve shortening by short rulers
ESAIM. Proceedings, Tome 46 (2014), pp. 217-232.

Voir la notice de l'article provenant de la source EDP Sciences

The aim is to construct a straight line between the two endpoints of a rectifiable curve using only a ruler, which is too short to connect them directly. The short ruler allows it to construct a polygonal line along the curve. Consecutive midpoints of it can be connected by the short ruler. That produces a shorter polygonal line and if the shortening is iterated, the polygonal line converges to the straight line. This short ruler method can be transported to cylinders. There, the ruler establishes short geodesics instead of straight lines. The produced sequence of curves converges to a geodesic which is homotopic to the original curve, but doesn’t have to be the shortest connection between the endpoints.
DOI : 10.1051/proc/201446018

Peter Stadler 1

1 TechnikerstraBe 13, A-6020 Innsbruck
@article{EP_2014_46_a18,
     author = {Peter Stadler},
     title = {Curve shortening by short rulers},
     journal = {ESAIM. Proceedings},
     pages = {217--232},
     publisher = {mathdoc},
     volume = {46},
     year = {2014},
     doi = {10.1051/proc/201446018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201446018/}
}
TY  - JOUR
AU  - Peter Stadler
TI  - Curve shortening by short rulers
JO  - ESAIM. Proceedings
PY  - 2014
SP  - 217
EP  - 232
VL  - 46
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201446018/
DO  - 10.1051/proc/201446018
LA  - en
ID  - EP_2014_46_a18
ER  - 
%0 Journal Article
%A Peter Stadler
%T Curve shortening by short rulers
%J ESAIM. Proceedings
%D 2014
%P 217-232
%V 46
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201446018/
%R 10.1051/proc/201446018
%G en
%F EP_2014_46_a18
Peter Stadler. Curve shortening by short rulers. ESAIM. Proceedings, Tome 46 (2014), pp. 217-232. doi : 10.1051/proc/201446018. http://geodesic.mathdoc.fr/articles/10.1051/proc/201446018/

Cité par Sources :