Scalar conservation law with discontinuity arising in pedestrian modeling
ESAIM. Proceedings, Tome 45 (2014), pp. 493-501.

Voir la notice de l'article provenant de la source EDP Sciences

We consider a generalized version of the Hughes’ macroscopic model of pedestrian motion. It consists of a conservation law on the pedestrian mass with an eikonal equation giving the direction of the flux depending of the density. The model displays a non-classical dynamics at the splitting point. Known convergence results for finite volume schemes do not apply in this setting. The wave-front tracking provides us with reference solutions to test numerically the convergence of classical finite volume schemes. These schemes will be used with a tracking algorithm to show the path of a single pedestrian during an evacuation.
DOI : 10.1051/proc/201445051

Matthias Mimault 1

1 INRIA Sophia-Antipolis
@article{EP_2014_45_a51,
     author = {Matthias Mimault},
     title = {Scalar conservation law with discontinuity arising in pedestrian modeling},
     journal = {ESAIM. Proceedings},
     pages = {493--501},
     publisher = {mathdoc},
     volume = {45},
     year = {2014},
     doi = {10.1051/proc/201445051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/proc/201445051/}
}
TY  - JOUR
AU  - Matthias Mimault
TI  - Scalar conservation law with discontinuity arising in pedestrian modeling
JO  - ESAIM. Proceedings
PY  - 2014
SP  - 493
EP  - 501
VL  - 45
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1051/proc/201445051/
DO  - 10.1051/proc/201445051
LA  - en
ID  - EP_2014_45_a51
ER  - 
%0 Journal Article
%A Matthias Mimault
%T Scalar conservation law with discontinuity arising in pedestrian modeling
%J ESAIM. Proceedings
%D 2014
%P 493-501
%V 45
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1051/proc/201445051/
%R 10.1051/proc/201445051
%G en
%F EP_2014_45_a51
Matthias Mimault. Scalar conservation law with discontinuity arising in pedestrian modeling. ESAIM. Proceedings, Tome 45 (2014), pp. 493-501. doi : 10.1051/proc/201445051. http://geodesic.mathdoc.fr/articles/10.1051/proc/201445051/

Cité par Sources :